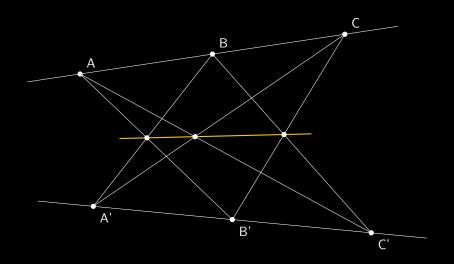
Algebraic Automated Theorem Proving

Clemens Hofstadler Institute for Symbolic Artificial Intelligence, JKU Linz, Austria Effective Algebra Days, Limoges, 7 November 2025

based on joint work with P. Krug, C.G. Raab, G. Regensburger, and T. Verron



Series Editor KENNETH H. ROSEN

HANDBOOK OF LINEAR ALGEBRA

SECOND EDITION

$$\begin{bmatrix} 2 & 2 & 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Edited by

Leslie Hogben

Definitions:

A Moore-Penrose pseudo-inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is a matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies the following four Penrose conditions:

$$AA^{\dagger}A = A$$
: $A^{\dagger}AA^{\dagger} = A^{\dagger}$: $(AA^{\dagger})^* = AA^{\dagger}$: $(A^{\dagger}A)^* = A^{\dagger}A$.

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp. 105-141] or [RM71, pp. 44-67].

- Every A ∈ C^{m×n} has a unique pseudo-inverse A[†].
 - If A ∈ R^{m×n}, then A[†] is real.
 - 3. If $A \in \mathbb{C}^{m \times n}$ of rank r has a full rank decomposition A = BC, where $B \in \mathbb{C}^{m \times r}$ and $C \in \mathbb{C}^{r \times n}$, then A^{\dagger} can be evaluated using $A^{\dagger} = C^*(B^*AC^*)^{-1}B^*$.
- LH95, p. 38 If A ∈ C^{m×n} of rank r < min{m, n} has an SVD A = UΣV*, then its pseudo-inverse is $A^{\dagger} = V \Sigma^{\dagger} U^*$, where

$$\Sigma^{\dagger} = \text{diag}(1/\sigma_1, ..., 1/\sigma_r, 0, ..., 0) \in \mathbb{R}^{n \times m}$$
.

5. [Hig96, p. 412] The pseudo-inverse A^{\dagger} of $A \in F^{m \times n}$ ($F = \mathbb{C}$ or \mathbb{R}) solves the minimization problem

$$\min_{X \in F^{n \times m}} ||AX - I_m||_F^2.$$

6. $\mathbf{0}_{mn}^{\dagger} = \mathbf{0}_{nm}$ and $J_{mn}^{\dagger} = \frac{1}{mn}J_{nm}$, where $\mathbf{0}_{mn} \in \mathbb{C}^{m \times n}$ is the all 0s matrix and $J_{mn} \in$ $\mathbb{C}^{m \times n}$ is the all 1s matrix.

- 7. If $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} \neq \mathbf{0}$, then $(\mathbf{x}\mathbf{y}^*)^{\dagger} = \frac{\mathbf{y}\mathbf{x}^*}{\|\mathbf{x}\|^2 \|\mathbf{y}\|^2}$.
- 8. If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x}^{\dagger} = \frac{\mathbf{x}^*}{\|\mathbf{x}\|^2}$.
- 9. Let α be a scalar. Denote

Let
$$\alpha$$
 be a scalar. Denote $\alpha^{\dagger} = \{ \begin{matrix} \alpha^{-1}, & \text{if } \alpha \neq 0, \\ 0, & \text{if } \alpha = 0. \end{matrix} \}$

Then

(a) $(\alpha A)^{\dagger} = \alpha^{\dagger} A^{\dagger}$.

(b) $(\operatorname{diag}(\beta_1, \beta_2, \dots, \beta_n))^{\dagger} = \operatorname{diag}(\beta_1^{\dagger}, \beta_2^{\dagger}, \dots, \beta_n^{\dagger})$.

- 10. $(A^{\dagger})^* = (A^*)^{\dagger}$: $(A^{\dagger})^{\dagger} = A$.
- If A is a nonsingular square matrix, then A[†] = A⁻¹.
- If U has orthonormal columns or orthonormal rows, then U[†] = U*.
- 13. If $A = A^*$ and $A = A^2$, then $A^{\dagger} = A$.
- A[†] = A* if and only if A*A is idempotent.
- If A is normal and k is a positive integer, then AA[†] = A[†]A and (A^k)[†] = (A[†])^k.
- If U ∈ C^{m×n} is of rank n and satisfies U[†] = U*, then U has orthonormal columns. If U ∈ C^{m×m} and V ∈ C^{n×n} are unitary matrices, then (UAV)[†] = V*A[†]U*.
- 18. $A^{\dagger} = (A^*A)^{\dagger}A^* = A^*(AA^*)^{\dagger}$. In particular,
 - (a) if A ∈ C^{m×n} (m > n) has full rank n, then A[†] = (A*A)⁻¹A*;
- (b) if A ∈ C^{m×n} (m ≤ n) has full rank m, then A[†] = A*(AA*)⁻¹.
- 19. Let $A \in \mathbb{C}^{m \times n}$. Then

- (a) A[†]A, AA[†], I_n − A[†]A, and I_m − AA[†] are orthogonal projections.
 - (b) $rank(A) = rank(A^{\dagger}) = rank(AA^{\dagger}) = rank(A^{\dagger}A)$.
 - (c) $rank(I_n A^{\dagger}A) = n rank(A)$.
 - (d) $\operatorname{rank}(I_m AA^{\dagger}) = m \operatorname{rank}(A)$.

Inner Product Spaces, Orthogonal Projection, Least Squares

- 20. $AA^{\dagger} = \text{Proj}_{\text{range}(A)}$; $A^{\dagger}A = \text{Proj}_{\text{range}(A)}$.
- 21. Suppose that $A \in F^{m \times n}$, where $F = \mathbb{C}$ or \mathbb{R} . Then
 - (a) range(A) = range(AA*) = range(AA†).
 - (b) $range(A^{\dagger}) = range(A^*) = range(A^*A) = range(A^{\dagger}A)$.

 - (c) ker(A) = ker(A*A) = ker(A†A).
 - (d) ker(A[†]) = ker(A*) = ker(AA*) = ker(AA[†]).
 - (e) range(A[†]A) ⊕ ker(A[†]A) = Fⁿ.
- (f) range(AA[†]) ⊕ ker(AA[†]) = F^m.
- 22. If $A = A_1 + A_2 + \cdots + A_k$, $A^*A_i = 0$, and $A_iA^* = 0$, for all $i, i = 1, \dots, k, i \neq i$. then $A^{\dagger} = A_1^{\dagger} + A_2^{\dagger} + \cdots + A_n^{\dagger}$.
- 23. If A is an $m \times r$ matrix of rank r and B is an $r \times n$ matrix of rank r, then $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- 24. $(A^*A)^{\dagger} = A^{\dagger}(A^*)^{\dagger}$: $(AA^*)^{\dagger} = (A^*)^{\dagger}A^{\dagger}$.
- [Gre66] Each one of the following conditions is necessary and sufficient for (AB)[†] =
 - (a) range(BB*A*) ⊂ range(A*) and range(A*AB) ⊂ range(B).
 - (b) A[†]ABB* and A*ABB[†] are both Hermitian matrices.
 - (c) $A^{\dagger}ABB^*A^* = BB^*A^*$ and $BB^{\dagger}A^*AB = A^*AB$
 - (d) $A^{\dagger}ABB^*A^*ABB^{\dagger} = BB^*A^*A$.
 - (e) A[†]AB = B(AB)[†]AB and BB[†]A* = A*AB(AB)[†].
- 26. $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$, where \otimes denotes the Kronecker product.
- 27. $A^{\dagger} = \lim_{\alpha \to 0} A^{*}(\alpha I + AA^{*})^{-1} = \lim_{\alpha \to 0} (\alpha I + A^{*}A)^{-1}A^{*}$.

$$28. \ A^{\dagger} = \sum^{\infty} A^* (I + AA^*)^{-j} = \sum^{\infty} (I + A^*A)^{-j} A^*.$$

- 29. (Continuity of pseudo-inverse) Suppose that $A \in F^{m \times n}$ and $E \in F^{m \times n}$, where F = \mathbb{C} or \mathbb{R} . Then $\lim_{t \to \infty} (A + E)^{\dagger} = A^{\dagger}$ if and only if there is $\epsilon > 0$ such that $\operatorname{rank}(A + E) =$ rank(A) when $||E||_2 < \epsilon$.
- 30. Let $A \in \mathbb{C}^{m \times n}$ be of rank r where $0 < r < \min\{m, n\}$. Suppose that A can be partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

where $A_{11} \in \mathbb{C}^{r \times r}$ and $rank(A_{11}) = r$. Then

$$A^{\dagger} = \begin{bmatrix} A_{11}^* X A_{11}^* & A_{11}^* X A_{21}^* \\ A_{12}^* X A_{11}^* & A_{12}^* X A_{21}^* \end{bmatrix}$$
,

where

$$X = (A_{11}A_{11}^* + A_{12}A_{12}^*)^{-1}A_{11}(A_{11}^*A_{11} + A_{21}^*A_{21})^{-1}.$$

Reverse order law for the Moore-Penrose inverse *

Dragan S. Diordiević*, Nebojša Č. Dinčić

Faculty of Sciences and Mathematics, University of NIX, PO Box 224, 18000 NIX, Browblic of Serbia

ARTICLE INFO

ARSTRACT

Received 7 May 2009 Available neline 2 Sentember 2009 Moore-Penrose inverse

In this paper we present new results related to the reverse order law for the Moore-

Penrose inverse of operators on Hilbert spaces. Some finite-dimensional results are extended to infinite-dimensional settings. © 2009 Elsevier Inc. All rights reserved.

Reverse order law

1. Introduction

In this paper we extend some results from [15] to infinite-dimensional settings. Among other things, we obtain the reverse order law for the Moore-Penrose inverse as a corollary. We use the matrix form of a linear bounded operator, and this matrix form is induced by some natural decompositions of Hilbert spaces.

In the rest of the Introduction we formulate two auxiliary results, in Section 2 we present the results related to the reverse order rule for the Moore-Penrose inverse of Hilbert space operators with closed range. The present paper is the extension of results from [15] to infinite-dimensional settings.

2. Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

Theorem 2.2. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then the following statements hold:

- (a) $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A^{*}AB = BB^{\dagger}A^{*}AB \Leftrightarrow \mathcal{R}(A^{*}AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)[1, 2, 3];$
- (b) $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow ABB^* = ABB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1,2,4\};$
- (c) The following statements are equivalent: (1) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$
- (2) $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger}$ and $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB$
- (3) $A^*AB = BB^{\dagger}A^*AB$ and $ABB^* = ABB^*A^{\dagger}A$: (4) R(A*AB) ⊆ R(B) and R(BB*A*) ⊆ R(A*)

Proof. The operators A and B have the same matrix representations as in the previous theorem. The following products will be useful-

$$AB = \begin{bmatrix} A_1B_1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad (AB)^\dagger = \begin{bmatrix} (A_1B_1)^\dagger & 0 \\ 0 & 0 \end{bmatrix}, \qquad B^\dagger A^\dagger = \begin{bmatrix} B_1^{-1}A_1^*D^{-1} & 0 \\ 0 & 0 \end{bmatrix}.$$

First, we find the equivalent expressions for our statements in terms of A_1 , A_2 and B_1 .

D.S. Disediević, N.C. Dinčić / J. Moth. Anal. Appl. 361 (2010) 252-261

- (a) I. $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1}$. Here $A_1B_1(A_1B_1)^{\dagger}$ is Hermitian, so $[A_1A_1^*, D^{-1}] = 0$. 2. $A^*AB = BB^{\dagger}A^*AB \Leftrightarrow A^*_1A_1 = 0$.
 - Notice that R(A*AB) ⊂ R(B) if and only if BB†A*AB = A*AB, so 2 ⇔ 3.

 - If we check properly the Penrose equations, then we see that: B[†]A[†] ∈ (AB)(1, 2, 3) ⇔ A₁A^{*}₁D⁻¹A₁ = A₁ and
 - $[A_1A_1^*, D^{-1}] = 0.$

Now, we prove the following: $1 \Leftrightarrow 2$, $4 \Rightarrow 2$ and $1 \Rightarrow 4$. We prove 1 & 2. Notice that

$$A_1B_1(A_1B_1)^\dagger = A_1A_1^*D^{-1} \quad \Leftrightarrow \quad (A_1B_1)^\dagger = (A_1B_1)^\dagger A_1A_1^*D^{-1}.$$

The last statement is obtained by multiplying the first expression by $(A_1B_2)^{\dagger}$ from the left side, or multiplying the second expression by A_1B_1 from the left side, and using $A_1A_1^* = A_1B_1B_1^{-1}A_1^*$. Now, there is a chain of the equivalences: $(A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1} \Leftrightarrow (A_1B_1)^{\dagger}(A_1A_1^* + A_2A_1^*) = (A_1B_1)^{\dagger}A_1A_1^*$

$$\Leftrightarrow (A_1B_1)^{\dagger}A_2A_2^* = 0 \Leftrightarrow \mathcal{R}(A_2A_2^*) \subset \mathcal{N}((A_1B_1)^{\dagger})$$

$$\Leftrightarrow \mathcal{R}(A_2) \subset \mathcal{N}((A_1B_1)^*) \Leftrightarrow B_1^*A_1^*A_2 = 0 \Leftrightarrow A_1^*A_2 = 0.$$

Therefore, we have just proved that $1 \Leftrightarrow 2$. Now we prove $1 \rightarrow 4$. If we multiply $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^{*}D^{-1}$ by A_1B_1 from the right side, we get $A_1A_1^{*}D^{-1}A_1 = A_1$. Thus, 4 holds. Finally, we prove $4 \Rightarrow 2$. If $A_1A_1^*D^{-1}A_1 = A_1$ and $(A_1A_1^*D^{-1}) = 0$, then $A_1A_1^*A_2 = DA_1 = A_1A_1^*A_1 + A_2A_1^*A_2$, implying

that $A_2A_1^*A_1=0$. Hence, $\mathcal{R}(A_1)\subset\mathcal{N}(A_2A_1^*)=\mathcal{N}(A_1^*)$, so $A_1^*A_1=0$. Thus, 2 holds. Notice that the equivalence 3 \Leftrightarrow 4 is proved in [8], also.

- (b) 1. $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow (A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A^{\dagger}D^{-1}A_1B_1$, Moreover, $(A_1B_1)^{\dagger}A_1B_1$ is Hermitian, so $[B_1B^{\dagger}, A^{\dagger}D^{-1}A_1] =$ 2. $ABB^* = ABB^*A^{\dagger}A \Leftrightarrow A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^* \text{ and } A_1B_1B_1^*A_1^*D^{-1}A_2 = 0.$
- 3. Notice that $\mathcal{R}(BB^*A^*) \subset \mathcal{R}(A^*)$ if and only if $A^{\dagger}ABB^*A^* = BB^*A^*$, which is equivalent to $ABB^*A^{\dagger}A = ABB^*$. Hence,
- 4. The Penrose equations imply that: $B^{\dagger}A^{\dagger} \in (AB)[1,2,4] \Leftrightarrow A_1A^{\dagger}D^{-1}A_1 = A_1$ and $[B_1B^{\dagger},A^{\dagger}D^{-1}A_1] = 0$.

We prove $1 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$. Suppose that 1 holds, if we multiply $(A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$ by A_1B_1 from the left side, we obtain $A_1 =$ $A_1A_1^*D^{-1}A_1$, Furthermore, $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$ holds. Therefore, $1 \Rightarrow 4$.

Suppose that 4 holds. Obviously, $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1A_1^*D^{-1}A_1B_1B_1^* = A_1B_1B_1^*$. Thus, the first equality of 2 holds. The second equality of 2 also holds, since $A_1^*D^{-1}A_2 = 0 \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1$, which is shown in the proof of Theorem 2.1. Here

we use again $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$. Consequently, $4 \Rightarrow 2$. In order to prove that $2 \rightarrow 1$, we multiply $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ by $(A_1B_1)^{\dagger}$ from the left side. It follows lows that $B_1^*A_1^*D^{-1}A_1 = (A_1B_1)^{\dagger}A_1B_1B_1^*$, so $(A_1B_1)^{\dagger}A_1B_1 = B_1^*A_1^*D^{-1}A_1(B_1^*)^{-1}$ which is equivalent to $(A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_1B_2 = (A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_$ $B_1^{-1}A_1^*D_1^{-1}A_1B_1$. Hence, $2 \Rightarrow 1$.

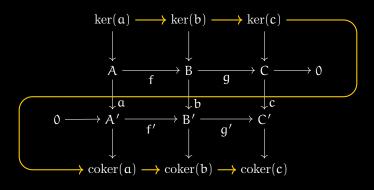
Notice that 3 oo 4 is also proved in [8].

Finally, the part (c) follows from the parts (a) and (b). We also prove the following result

Theorem 2.3. Let X. Y. Z be Hilbert spaces, and let A e. C.(Y. Z). B e. C.(X. Y) be such that A. B. AB have closed ranges. Then we

- (a) $AB(AB)^{\dagger}A = ABB^{\dagger} \Leftrightarrow A^*ABB^{\dagger} = BB^{\dagger}A^*A \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1, 2, 3)$: (b) $B(AB)^{\dagger}AB = A^{\dagger}AB \Leftrightarrow A^{\dagger}ABB^* = BB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1, 2, 4)$;
- (c) The following three statements are equivalent: (1) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$:
 - (2) $AB(AB)^{\dagger}A = ABB^{\dagger}$ and $B(AB)^{\dagger}AB = A^{\dagger}AB$: (3) A*ARRT - RRTA*A and ATARR* - RR*ATA

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent expressions, in the terms of A_1 , A_2 and B_1 , for our assumptions.



Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$ABA = A$$
, $BAB = B$, $B^*A^* = AB$, $A^*B^* = BA$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$ABA = A$$
, $BAB = B$, $B^*A^* = AB$, $A^*B^* = BA$

Claim If B and C satisfy these identities, then B = C.

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$ABA = A$$
, $BAB = B$, $B^*A^* = AB$, $A^*B^* = BA$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$ABA = A$$
, $BAB = B$, $B^*A^* = AB$, $A^*B^* = BA$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff L - R = 0$$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$ABA=A, \qquad BAB=B, \qquad B^*A^*=AB, \qquad A^*B^*=BA$$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff L - R$$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

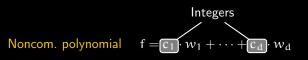
$$ABA - A$$
, $BAB - B$, $B^*A^* - AB$, $A^*B^* - BA$

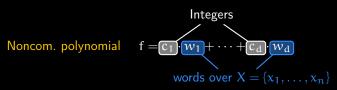
Claim If B and C satisfy these identities, then B = C.

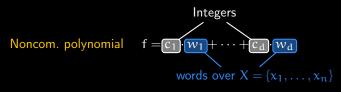
Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff L - R$$

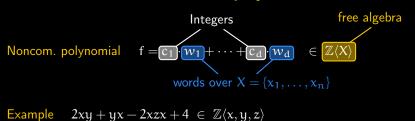
Noncom. polynomial
$$f = c_1 \cdot w_1 + \dots + c_d \cdot w_d$$

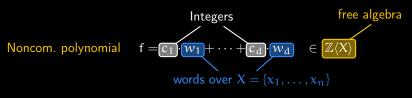






Example
$$2xy + yx - 2xzx + 4$$





Example
$$2xy + yx - 2xzx + 4 \in \mathbb{Z}\langle x, y, z \rangle$$

Arithmetic operations

Addition = like in the commutative case
$$(xy-z) + (yx+2z) = xy + yx + z$$

$$\text{Multiplication} = \text{concatenation of words}$$

$$(xy-z) \cdot (yx+2z) = xyyx + 2xyz - zyx - 2zz$$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$ABA - A$$
, $BAB - B$, $B^*A^* - AB$, $A^*B^* - BA$

Claim If B and C satisfy these identities, then B = C.

$$B = BAB = BACAB = \dots = C$$

$$L = R \iff L - R$$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$aba - a$$
, $bab - b$, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff l - r \in \mathbb{Z}\langle \mathbf{X} \rangle$$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$aba - a$$
, $bab - b$, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$\begin{array}{ccc} L = R & \iff & l - r \in \mathbb{Z}\langle \mathbf{X} \rangle \\ B = \ldots = C & \iff & ? \end{array}$$

Definition A nonempty set $I \subseteq \mathbb{Z}\langle X \rangle$ is a (two-sided) ideal if

- 1. $f, g \in I \Rightarrow f + g \in I$
- **2.** $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \dots, f_r is denoted by $I = (f_1, \dots, f_r)$.

Definition A nonempty set $I \subseteq \mathbb{Z}\langle X \rangle$ is a (two-sided) ideal if

- 1. $f, g \in I \Rightarrow f + g \in I$
- **2.** $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \dots, f_r is denoted by $I = (f_1, \dots, f_r)$.

"axioms"

Definition A nonempty set $I \subseteq \mathbb{Z}\langle X \rangle$ is a (two-sided) ideal if

- $\textbf{1.} \quad f,g \in I \ \Rightarrow \ f+g \in I \qquad \qquad \text{"deduction rules"}$
- **2.** $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \dots, f_r is denoted by $I = (f_1, \dots, f_r)$.

"axioms"

Definition A nonempty set $I \subseteq \mathbb{Z}\langle X \rangle$ is a (two-sided) ideal if

- **2.** $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \ldots, f_r is denoted by $I = (f_1, \ldots, f_r)$.

"axioms" "theory"

- 1. $f, g \in I \Rightarrow f + g \in I$ "deduction rules" 2. $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$
- The smallest ideal containing f_1, \ldots, f_r is denoted by $I = (f_1, \ldots, f_r)$ is denoted by $I = (f_1, \ldots, f$

 $f \text{ is consequence of } f_1, \dots, f_r \quad \Longleftrightarrow \quad f \in (f_1, \dots, f_r)$

Definition A nonempty set $I \subseteq \mathbb{Z}\langle X \rangle$ is a (two-sided) ideal if

- 1. $f, g \in I \implies f + g \in I$ "deduction rules"
- **2.** $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \ldots, f_r is denoted by $I = (f_1, \ldots, f_r)$ "axioms" "theory"

 $f \text{ is consequence of } f_1, \dots, \overline{f_r} \quad \Longleftrightarrow \quad f \in (f_1, \dots, f_r)$

Definition A nonempty set $I \subseteq \mathbb{Z}\langle X \rangle$ is a (two-sided) ideal if

1.
$$f, g \in I \Rightarrow f + g \in I$$
 "deduction rules"

2. $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \ldots, f_r is denoted by $I = (f_1, \ldots, f_r)$.

"axioms" "theory"

f is consequence of $f_1, \dots, f_r \iff f \in (f_1, \dots, f_r)$

- $f \in (f_1, \dots, f_r)$ can always be verified in finite time
- in this case, we can compute $p_i, q_i \in \mathbb{Z}\langle X \rangle$: $f = \sum_i p_i \cdot f_i \cdot q_i$

Definition A nonempty set $I \subseteq \mathbb{Z}\langle X \rangle$ is a (two-sided) ideal if

1.
$$f, g \in I \Rightarrow f + g \in I$$

—— "deduction rules"

2.
$$f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$$

The smallest ideal containing f_1, \ldots, f_r is denoted by $I = (f_1, \ldots, f_r)$.

"axioms" "theory"

$$f \text{ is consequence of } f_1, \dots, f_r \quad \Longleftrightarrow \quad f \in (f_1, \dots, f_r)$$

- $f \in (f_1, \dots, f_r)$ can always be verified in finite time "proof/certificate"
- in this case, we can compute $p_i,q_i\in\mathbb{Z}\langle X\rangle$: $f=\sum_i p_i\cdot f_i\cdot q_i$

Definition A nonempty set $I \subseteq \mathbb{Z}\langle X \rangle$ is a (two-sided) ideal if

1.
$$f, g \in I \Rightarrow f + g \in I$$

— "deduction rules"

2.
$$f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$$

The smallest ideal containing f_1, \ldots, f_r is denoted by $I = (f_1, \ldots, f_r)$.

"axioms" "theory"

f is consequence of
$$f_1, \dots, f_r \iff f \in (f_1, \dots, f_r)$$

- $f \in (f_1, \dots, f_r)$ can always be verified in finite time "proof/certificate"
- in this case, we can compute $p_i,q_i\in\mathbb{Z}\langle X\rangle$: $f=\sum_i p_i\cdot f_i\cdot q_i$
- if $f \notin (f_1, \dots, f_r)$, we might run into an infinite computation

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$aba - a$$
, $bab - b$, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff l - r \in \mathbb{Z}\langle \mathbf{X} \rangle$$

$$B = \ldots = C \quad \Longleftrightarrow \quad ?$$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

$$aba - a$$
, $bab - b$, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

$$B = BAB = BACAB = \dots = C$$

$$\begin{array}{ccc} L = R & \iff & l - r \in \mathbb{Z}\langle X \rangle \\ B = \ldots = C & \iff & b - c \in (f_1, \ldots, f_{12}) \end{array}$$

Def.: A matrix B is Moore-Penrose inverse of a matrix A if $aba-a\,,\qquad bab-b\,,\qquad b^*a^*-ab\,,\qquad a^*b^*-ba$

Claim If B and C satisfy these identities, then B = C.

Proof Using our software package operator_gb...

```
sage: from operator_gb import *
sage: assumptions = [a*b*a - a,...]
sage: certify(assumptions, b - c)
```

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

```
aba\ -a\,,\qquad bab\ -b\,,\qquad b^*a^*\,-ab\,,\qquad a^*b^*\,-ba
```

Claim If B and C satisfy these identities, then B = C.

Proof Using our software package operator_gb...

Def.: A matrix B is Moore-Penrose inverse of a matrix A if

```
aba - a, bab - b, b^*a^* - ab, a^*b^* - ba
```

Claim If B and C satisfy these identities, then B = C.

Proof Using our software package operator_gb...

Observation Proof only relies on basic linearity properties

⇒ Statement proven for matrices, (un)bounded operators, morphisms,...

Operator statements

Operators

- 0, A, B, C, ... S + T, $S \cdot T$, $f(T_1, \ldots, T_n)$

Operators

$$^*,\,\cdot^\mathsf{T},\,\|\cdot\|,\,\otimes,\dots$$

- $0, A, B, C, \dots$ $S + T, S \cdot T, f(T_1, \dots, T_n)$

Operators

$$^{*},\,\cdot^{\mathsf{T}},\,\|\cdot\|,\,\otimes,\dots$$

- 0, A, B, C, ... S + T, $S \cdot T$, $f(T_1, \ldots, T_n)$

Linearity

- 1. + forms an abelian group 2. is associative

3. distributivity

Operators

$$^{*},\,\cdot^{\mathsf{T}},\,\|\cdot\|,\,\otimes,\dots$$

- \bullet 0, A, B, C, ... \bullet S + T, S · T, $f(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- 3. distributivity

- 2. · is associative
- 4.* we also allow partial operations

Operators

$$^{*},\,\cdot^{\mathsf{T}},\,\|\cdot\|,\,\otimes,\dots$$

- \bullet 0, A, B, C, ... \bullet S + T, S · T, $\mathbf{f}(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- 3. distributivity

- 2. · is associative
- 4.* we also allow partial operations

Operators

$$^{*},\,\cdot^{\mathsf{T}},\,\|\cdot\|,\,\otimes,\dots$$

- \bullet 0, A, B, C, ... \bullet S + T, S · T, $\mathbf{f}(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- 3. distributivity

- 2. · is associative
- 4.* we also allow partial operations

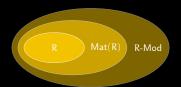
Operators

$$^*,\,\cdot^\mathsf{T},\,\|\cdot\|,\,\otimes,\dots$$

- \bullet 0, A, B, C, ... \bullet S + T, S · T, $\mathbf{f}(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- 3. distributivity

- 2. · is associative
- 4.* we also allow partial operations



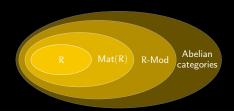
Operators

$$^*, \ \cdot^\mathsf{T}, \ \|\cdot\|, \ \otimes, \dots$$

- \bullet 0, A, B, C, ... \bullet S + T, S · T, $\mathbf{f}(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- 3. distributivity

- 2. · is associative
- 4.* we also allow partial operations



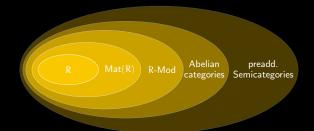
Operators

$$^*, \ \cdot^\mathsf{T}, \ \|\cdot\|, \ \otimes, \dots$$

- \bullet 0, A, B, C, ... \bullet S + T, S · T, $\mathbf{f}(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- 3. distributivity

- 2. · is associative
- 4.* we also allow partial operations



Operators

$$^{*},\,\cdot^{\mathsf{T}},\,\|\cdot\|,\,\otimes,\dots$$

- 0, A, B, C, ... S + T, $S \cdot T$, $f(T_1, \ldots, T_n)$

Linearity

- 1. + forms an abelian group 2. · is associative
- 3. distributivity

- 4.* we also allow partial operations

Operator statements

$$S = \mathsf{T}, \quad \neg \, \phi, \quad (\phi \wedge \psi), \quad (\phi \vee \psi), \quad (\phi \Rightarrow \psi), \quad \exists \, X : \phi, \quad \forall \, X : \phi$$

Operators

$$^{*},\,\cdot^{\mathsf{T}},\,\|\cdot\|,\,\otimes,\dots$$

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

Linearity

- 1. + forms an abelian group 2. · <u>is associative</u>
- 3. distributivity

- 4.* we also allow partial operations

Operator statements

$$S = T, \quad \neg \, \phi, \quad (\phi \wedge \psi), \quad (\phi \vee \psi), \quad (\phi \Rightarrow \psi), \quad \exists \, X : \phi, \quad \forall \, X : \phi$$

Def. An operator statement is universally true if it follows from linearity.

Operators

$$^*,\,\cdot^\mathsf{T},\,\|\cdot\|,\,\otimes,\dots$$

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

Linearity

- 1. + forms an abelian group 2. · is associative
- 3. distributivity

- 4.* we also allow partial operations

Operator statements

$$S = T$$
, $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \Rightarrow \psi)$, $\exists X : \varphi$, $\forall X : \varphi$

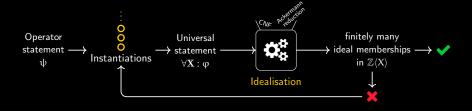
An operator statement is universally true if it follows from linearity.

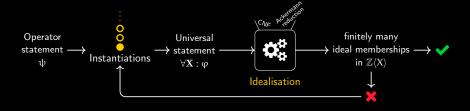
Fact: Determining universal truth is not decidable Best we can hope for: semi-decision procedure

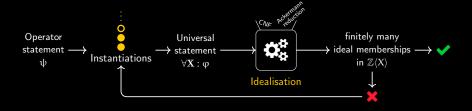
Quasi-identities

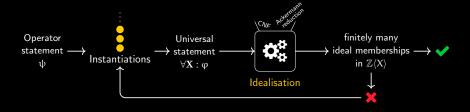
(Helton, Stankus, Wavrik '98, Schmitz, Levandovskyy '20, Raab, Regensburger, Hossein Poor '21)

$$\bigwedge_{i=1}^m P_i = Q_i \ \Rightarrow \ S = T \qquad \text{iff} \qquad s-t \ \in \ \left(p_1 - q_1, \ldots, p_m - q_m\right)$$

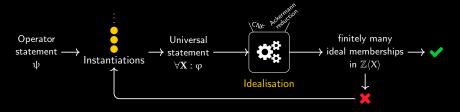








General operator statements



Theorem (H., Raab, Regensburger '22)

An operator statement is universally true iff this procedure terminates and returns \checkmark .

Pseudo-Inverse

Definitions:

A Moore-Penrose pseudo-inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is a matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies the following four Penrose conditions:

$$AA^{\dagger}A = A$$
: $A^{\dagger}AA^{\dagger} = A^{\dagger}$: $(AA^{\dagger})^* = AA^{\dagger}$: $(A^{\dagger}A)^* = A^{\dagger}A$.

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp. 105-141] or [RM71, pp. 44-67].

- ✓ Every A ∈ C^{m×n} has a unique pseudo-inverse A[†].
- If A ∈ R^{m×n}, then A[†] is real.
- \mathcal{J} . If $A \in \mathbb{C}^{m \times n}$ of rank r has a full rank decomposition A = BC, where $B \in \mathbb{C}^{m \times r}$ and $C \in \mathbb{C}^{r \times n}$, then A^{\dagger} can be evaluated using $A^{\dagger} = C^*(B^*AC^*)^{-1}B^*$.
- √ [LH95, p. 38] If A ∈ C^{m×n} of rank r < min{m, n} has an SVD A = UΣV*, then its
 </p> pseudo-inverse is $A^{\dagger} = V \Sigma^{\dagger} U^*$, where

$$\Sigma^{\dagger} = \text{diag}(1/\sigma_1, \dots, 1/\sigma_r, 0, \dots, 0) \in \mathbb{R}^{n \times m}$$
.

 $\fill Hig96$, p. 412 The pseudo-inverse A^{\dagger} of $A \in F^{m \times n}$ ($F = \mathbb{C}$ or \mathbb{R}) solves the minimization problem

$$\min_{X \in E^{n \times m}} ||AX - I_m||_F^2.$$

6. $\mathbf{0}_{mn}^{\dagger} = \mathbf{0}_{nm}$ and $J_{mn}^{\dagger} = \frac{1}{mn}J_{nm}$, where $\mathbf{0}_{mn} \in \mathbb{C}^{m \times n}$ is the all 0s matrix and $J_{mn} \in \mathbb{C}^{m \times n}$ $\mathbb{C}^{m \times n}$ is the all 1s matrix.

 $\alpha^{\dagger} = \{ \begin{matrix} \alpha^{-1}, & \text{if } \alpha \neq 0, \\ 0 & \text{if } \alpha = 0. \end{matrix} \}$

- \checkmark . If $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} \neq \mathbf{0}$, then $(\mathbf{x}\mathbf{y}^*)^{\dagger} = \frac{\mathbf{y}\mathbf{x}^*}{\|\mathbf{y}\|^2 \|\mathbf{y}\|^2}$.
- \forall . If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x}^{\dagger} = \frac{\mathbf{x}^*}{\|\mathbf{x}\|^2}$.
- Let α be a scalar. Denote

Then

 $(\alpha A)^{\dagger} = \alpha^{\dagger} A^{\dagger}$.

 $(\operatorname{diag}(\beta_1, \beta_2, \dots, \beta_n))^{\dagger} = \operatorname{diag}(\beta_1^{\dagger}, \beta_2^{\dagger}, \dots, \beta_n^{\dagger}).$

 $(A^{\dagger})^* = (A^*)^{\dagger}; (A^{\dagger})^{\dagger} = A.$

M. If A is a nonsingular square matrix, then A[†] = A⁻¹.

■ If U has orthonormal columns or orthonormal rows, then U[†] = U^{*}. N. If $A = A^*$ and $A = A^2$, then $A^{\dagger} = A$.

M. A[†] = A* if and only if A*A is idempotent. If A is normal and k is a positive integer, then AA[†] = A[†]A and (A^k)[†] = (A[†])^k.

M. If U ∈ C^{m×n} is of rank n and satisfies U[†] = U*, then U has orthonormal columns. W. If $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices, then $(UAV)^{\dagger} = V^*A^{\dagger}U^*$.

18. $A^{\dagger} = (A^*A)^{\dagger}A^* = A^*(AA^*)^{\dagger}$. In particular, (a) if A ∈ C^{m×n} (m > n) has full rank n, then A[†] = (A*A)⁻¹A*;

(★) if A ∈ C^{m×n} (m ≤ n) has full rank m, then A[†] = A*(AA*)⁻¹.

19. Let $A \in \mathbb{C}^{m \times n}$. Then

- (a) A[†]A, AA[†], I_n − A[†]A, and I_m − AA[†] are orthogonal projections.
- $(\mathbf{M} \operatorname{rank}(A) = \operatorname{rank}(A^{\dagger}) = \operatorname{rank}(AA^{\dagger}) = \operatorname{rank}(A^{\dagger}A).$

Inner Product Spaces, Orthogonal Projection, Least Squares

- \bowtie rank $(I_n A^{\dagger}A) = n \text{rank}(A)$.
- $\operatorname{rank}(I_m AA^{\dagger}) = m \operatorname{rank}(A).$
- 26. $AA^{\dagger} = \text{Proj}_{\text{range}(A)}; A^{\dagger}A = \text{Proj}_{\text{range}(A)}.$
- 24. Suppose that $A \in F^{m \times n}$, where $F = \mathbb{C}$ or \mathbb{R} . Then

 - (a) range(A) = range(AA^{*}) = range(AA[†]).
 - (b) range (A^{\dagger}) = range (A^*A) = range (A^*A) = range $(A^{\dagger}A)$.
- (ø) ker(A) = ker(A*A) = ker(A†A).
- (d) $ker(A^{\dagger}) = ker(A^{\ast}) = ker(AA^{\ast}) = ker(AA^{\dagger}).$
- range(A[†]A) ⊕ ker(A[†]A) = Fⁿ.
- $(K)' \operatorname{range}(AA^{\dagger}) \oplus \ker(AA^{\dagger}) = F^m$
- 22. If $A = A_1 + A_2 + \cdots + A_k$, $A^*A_i = 0$, and $A_iA^* = 0$, for all $i, i = 1, \dots, k, i \neq i$. then $A^{\dagger} = A_1^{\dagger} + A_2^{\dagger} + \cdots + A_n^{\dagger}$.
- 26. If A is an $m \times r$ matrix of rank r and B is an $r \times n$ matrix of rank r, then $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- **24.** $(A^*A)^{\dagger} = A^{\dagger}(A^*)^{\dagger}$: $(AA^*)^{\dagger} = (A^*)^{\dagger}A^{\dagger}$. [Gre66] Each one of the following conditions is necessary and sufficient for (AB)[†] =
 - (a) range(BB*A*) ⊆ range(A*) and range(A*AB) ⊆ range(B).
 - A[†]ABB* and A*ABB[†] are both Hermitian matrices.
- $A^{\dagger}ABB^*A^* = BB^*A^* \text{ and } BB^{\dagger}A^*AB = A^*AB$
- (d) $A^{\dagger}ABB^*A^*ABB^{\dagger} = BB^*A^*A$.
- (a) A[†]AB = B(AB)[†]AB and BB[†]A* = A*AB(AB)[†].
- 26. $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$, where \otimes denotes the Kronecker product.
- $A^{\dagger} = \lim_{\alpha \to 0} A^{*}(\alpha I + AA^{*})^{-1} = \lim_{\alpha \to 0} (\alpha I + A^{*}A)^{-1}A^{*}.$

$$A^{\dagger} = \sum_{i=1}^{\infty} A^{*}(I + AA^{*})^{-j} = \sum_{i=1}^{\infty} (I + A^{*}A)^{-j}A^{*}.$$

- M. (Continuity of pseudo-inverse) Suppose that $A \in F^{m \times n}$ and $E \in F^{m \times n}$, where F = \mathbb{C} or \mathbb{R} . Then $\lim_{t \to \infty} (A + E)^{\dagger} = A^{\dagger}$ if and only if there is $\epsilon > 0$ such that $\operatorname{rank}(A + E) = 0$ rank(A) when $||E||_2 < \epsilon$.
- 39. Let $A \in \mathbb{C}^{m \times n}$ be of rank r where $0 < r < \min\{m,n\}$. Suppose that A can be partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
,

where $A_{11} \in \mathbb{C}^{r \times r}$ and $rank(A_{11}) = r$. Then

$$A^{\dagger} = \begin{bmatrix} A_{11}^* X A_{11}^* & A_{11}^* X A_{21}^* \\ A_{12}^* X A_{11}^* & A_{12}^* X A_{21}^* \end{bmatrix}$$
,

where

$$X = (A_{11}A_{11}^* + A_{12}A_{12}^*)^{-1}A_{11}(A_{11}^*A_{11} + A_{21}^*A_{21})^{-1}.$$

Reverse order law for the Moore-Penrose inverse *

Dragan S. Diordiević*, Nebojša Č. Dinčić

Faculty of Sciences and Mathematics, University of NIX, PO Box 224, 18000 NIX, Browblic of Serbia

ARTICLE INFO

ARSTRACT

Received 7 May 2009 Available neline 2 Sentember 2009 Moore-Penrose inverse

In this paper we present new results related to the reverse order law for the Moore-Penrose inverse of operators on Hilbert spaces. Some finite-dimensional results are extended to infinite-dimensional settings. © 2009 Elsevier Inc. All rights reserved.

Reverse order law

1. Introduction

In this paper we extend some results from [15] to infinite-dimensional settings. Among other things, we obtain the reverse order law for the Moore-Penrose inverse as a corollary. We use the matrix form of a linear bounded operator, and this matrix form is induced by some natural decompositions of Hilbert spaces.

In the rest of the Introduction we formulate two auxiliary results, in Section 2 we present the results related to the reverse order rule for the Moore-Penrose inverse of Hilbert space operators with closed range. The present paper is the extension of results from [15] to infinite-dimensional settings.

2. Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

Theorem 2.2. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then the following statements hold:

 $(AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A^*AB = BB^{\dagger}A^*AB \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1,2,3);$ $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow ABB^* = ABB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1, 2, 4\};$ The following statements are equivalent:

(M (AR)) - RIAT $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger}$ and $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB$: $A^*AB = BB^{\dagger}A^*AB$ and $ABB^* = ABB^*A^{\dagger}A$: $(A^*AB) \subseteq \mathcal{R}(B)$ and $\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*)$.

Proof. The operators A and B have the same matrix representations as in the previous theorem. The following products will be useful-

$$AB = \begin{bmatrix} A_1B_1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad (AB)^\dagger = \begin{bmatrix} (A_1B_1)^\dagger & 0 \\ 0 & 0 \end{bmatrix}, \qquad B^\dagger A^\dagger = \begin{bmatrix} B_1^{-1}A_1^*D^{-1} & 0 \\ 0 & 0 \end{bmatrix}.$$

First, we find the equivalent expressions for our statements in terms of A_1 , A_2 and B_1 .

D.S. Disediević, N.C. Dinčić / J. Moth. Anal. Appl. 361 (2010) 252-261

- (a) I. $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1}$. Here $A_1B_1(A_1B_1)^{\dagger}$ is Hermitian, so $[A_1A_1^*, D^{-1}] = 0$. 2. $A^*AB = BB^{\dagger}A^*AB \Leftrightarrow A^*_1A_1 = 0$.

 - Notice that R(A*AB) ⊂ R(B) if and only if BB†A*AB = A*AB, so 2 ⇔ 3.
 - If we check properly the Penrose equations, then we see that: B[†]A[†] ∈ (AB)(1, 2, 3) ⇔ A₁A^{*}₁D⁻¹A₁ = A₁ and
 - $[A_1A_1^*, D^{-1}] = 0.$

Now, we prove the following: $1 \Leftrightarrow 2$, $4 \Rightarrow 2$ and $1 \Rightarrow 4$.

We prove 1 & 2. Notice that

 $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1} \Leftrightarrow (A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1}$

The last statement is obtained by multiplying the first expression by $(A_1B_2)^{\dagger}$ from the left side, or multiplying the second expression by A_1B_1 from the left side, and using $A_1A_1^* = A_1B_1B_1^{-1}A_1^*$. Now, there is a chain of the equivalences: $(A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1} \Leftrightarrow (A_1B_1)^{\dagger}(A_1A_1^* + A_2A_1^*) = (A_1B_1)^{\dagger}A_1A_1^*$

$$\Leftrightarrow (A_1B_1)^{\dagger}A_2A_2^* = 0 \Leftrightarrow \mathcal{R}(A_2A_2^*) \subset \mathcal{N}((A_1B_1)^{\dagger})$$

$$\Leftrightarrow \mathcal{R}(A_2) \subset \mathcal{N}((A_1B_1)^*) \Leftrightarrow B_1^*A_1^*A_2 = 0 \Leftrightarrow A_1^*A_2 = 0.$$

Therefore, we have just proved that $1 \Leftrightarrow 2$. Now we prove $1 \rightarrow 4$. If we multiply $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^{*}D^{-1}$ by A_1B_1 from the right side, we get $A_1A_1^{*}D^{-1}A_1 = A_1$. Thus, 4 holds.

Finally, we prove $4 \Rightarrow 2$. If $A_1A_1^*D^{-1}A_1 = A_1$ and $[A_1A_1^*, D^{-1}] = 0$, then $A_1A_1^*A_2 = DA_1 = A_1A_1^*A_1 + A_2A_2^*A_1$, implying that $A_2A_1^*A_1=0$. Hence, $\mathcal{R}(A_1)\subset\mathcal{N}(A_2A_1^*)=\mathcal{N}(A_1^*)$, so $A_1^*A_1=0$. Thus, 2 holds. Notice that the equivalence 3 \Leftrightarrow 4 is proved in [8], also.

- (b) 1. $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow (A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A^{\dagger}D^{-1}A_1B_1$, Moreover, $(A_1B_1)^{\dagger}A_1B_1$ is Hermitian, so $[B_1B^{\dagger}, A^{\dagger}D^{-1}A_1] =$ 2. $ABB^* = ABB^*A^{\dagger}A \Leftrightarrow A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^* \text{ and } A_1B_1B_1^*A_1^*D^{-1}A_2 = 0.$
- 3. Notice that $\mathcal{R}(BB^*A^*) \subset \mathcal{R}(A^*)$ if and only if $A^{\dagger}ABB^*A^* = BB^*A^*$, which is equivalent to $ABB^*A^{\dagger}A = ABB^*$. Hence,
- 4. The Penrose equations imply that: $B^{\dagger}A^{\dagger} \in (AB)[1,2,4] \Leftrightarrow A_1A^{\dagger}D^{-1}A_1 = A_1$ and $[B_1B^{\dagger},A^{\dagger}D^{-1}A_1] = 0$. We prove $1 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$.

Suppose that 1 holds. If we multiply $(A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$ by A_1B_1 from the left side, we obtain $A_1 =$ $A_1A_1^*D^{-1}A_1$, Furthermore, $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$ holds. Therefore, $1 \Rightarrow 4$. Suppose that 4 holds. Obviously, $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1A_1^*D^{-1}A_1B_1B_1^* = A_1B_1B_1^*$. Thus, the first equality of 2 holds. The

second equality of 2 also holds, since $A_1^*D^{-1}A_2 = 0 \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1$, which is shown in the proof of Theorem 2.1. Here we use again $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$. Consequently, $4 \Rightarrow 2$. In order to prove that $2 \rightarrow 1$, we multiply $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ by $(A_1B_1)^{\dagger}$ from the left side. It follows lows that $B_1^*A_1^*D^{-1}A_1 = (A_1B_1)^{\dagger}A_1B_1B_1^*$, so $(A_1B_1)^{\dagger}A_1B_1 = B_1^*A_1^*D^{-1}A_1(B_1^*)^{-1}$ which is equivalent to $(A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_1B_2 = (A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_$

 $B_1^{-1}A_1^*D_1^{-1}A_1B_1$. Hence, $2 \Rightarrow 1$. Notice that 3 oo 4 is also proved in [8].

Finally, the part (c) follows from the parts (a) and (b).

We also prove the following result

Theorem 2.3. Let X. Y. Z be Hilbert spaces, and let A e. C.(Y. Z). B e. C.(X. Y) be such that A. B. AB have closed ranges. Then we

 $(AB(AB)^{\dagger}A = ABB^{\dagger} \Leftrightarrow A^*ABB^{\dagger} = BB^{\dagger}A^*A \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1, 2, 3)$ $(b^{\dagger}B(AB)^{\dagger}AB = A^{\dagger}AB \Leftrightarrow A^{\dagger}ABB^* = BB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)[1, 2, 4];$ The following three statements are equivalent:

 $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ $AB(AB)^{\dagger}A = ABB^{\dagger}$ and $B(AB)^{\dagger}AB = A^{\dagger}AB$: A*ARRT - RRTA*A and ATARR* - RR*ATA

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent expressions, in the terms of A_1 , A_2 and B_1 , for our assumptions.

Dragan S. Diordiević*, Nebojša Č. Dinčić

Faculty of Sciences and Mathematics, University of NIX, PO Box 224, 18000 NIX, Browblic of Serbia

ARTICLE INFO

ARSTRACT

Received 7 May 2009 Available neline 2 Sentember 2009 Moore-Penrose inverse

In this paper we present new results related to the reverse order law for the Moore-Penrose inverse of operators on Hilbert spaces. Some finite-dimensional results are extended to infinite-dimensional settings. © 2009 Elsevier Inc. All rights reserved.

Reverse order law

1. Introduction

In this paper we extend some results from [15] to infinite-dimensional settings. Among other things, we obtain the reverse order law for the Moore-Penrose inverse as a corollary. We use the matrix form of a linear bounded operator, and this matrix form is induced by some natural decompositions of Hilbert spaces.

In the rest of the introduction we formulate two auxiliary results. In Section 2 we present the results related to th reverse order rule for the Moore-Penrose inverse of Hilbert space operators with closed range. The present paper is the extension of results from [15] to infinite-dimensional settings.

2. Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

Theorem 2.2. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then the following statements hold:

 $(AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A^*AB = BB^{\dagger}A^*AB \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1,2,3);$ $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow ABB^* = ABB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1,2,4\};$

The following statements are equivalent: (M (AR)) - RIAT $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger}$ and $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB$; $A^*AB = BB^{\dagger}A^*AB$ and $ABB^* = ABB^*A^{\dagger}A$: $(A^*AB) \subseteq \mathcal{R}(B)$ and $\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*)$.

Proof. The operators A and B have the same matrix representations as in the previous theorem. The following products will be useful-

$$AB = \begin{bmatrix} A_1B_1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad (AB)^\dagger = \begin{bmatrix} (A_1B_1)^\dagger & 0 \\ 0 & 0 \end{bmatrix}, \qquad B^\dagger A^\dagger = \begin{bmatrix} B_1^{-1}A_1^*D^{-1} & 0 \\ 0 & 0 \end{bmatrix}.$$

First, we find the equivalent expressions for our statements in terms of A_1 , A_2 and B_1 .

D.S. Disediević, N.C. Dinčić / J. Moth. Anal. Appl. 361 (2010) 252-261

- (a) I. $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1}$. Here $A_1B_1(A_1B_1)^{\dagger}$ is Hermitian, so $[A_1A_1^*, D^{-1}] = 0$. 2. $A^*AB = BB^{\dagger}A^*AB \Leftrightarrow A^*_1A_1 = 0$.
 - Notice that R(A*AB) ⊂ R(B) if and only if BB†A*AB = A*AB, so 2 ⇔ 3.

 - If we check properly the Penrose equations, then we see that: B[†]A[†] ∈ (AB)(1, 2, 3) ⇔ A₁A^{*}₁D⁻¹A₁ = A₁ and
 - $[A_1A_1^*, D^{-1}] = 0.$

Now, we prove the following: $1 \Leftrightarrow 2$, $4 \Rightarrow 2$ and $1 \Rightarrow 4$.

We prove 1 & 2. Notice that

 $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1} \Leftrightarrow (A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1}$

The last statement is obtained by multiplying the first expression by $(A_1B_2)^{\dagger}$ from the left side, or multiplying the second expression by A_1B_1 from the left side, and using $A_1A_1^* = A_1B_1B_1^{-1}A_1^*$. Now, there is a chain of the equivalences:

$$(A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1}$$
 \Leftrightarrow $(A_1B_1)^{\dagger}(A_1A_1^* + A_2A_2^*) = (A_1B_1)^{\dagger}A_1A_1^*$
 \Leftrightarrow $(A_1B_1)^{\dagger}A_2A_2^* = 0 \Leftrightarrow \mathcal{R}(A_2A_2^*) \subset \mathcal{N}((A_1B_1)^{\dagger})$
 $\Leftrightarrow \mathcal{R}(A_2) \subset \mathcal{N}((A_1B_1)^*) \Leftrightarrow B_1^*A_1^*A_2 = 0 \Leftrightarrow A_1^*A_2 = 0$

Therefore, we have just proved that $1 \Leftrightarrow 2$. Now we prove $1 \rightarrow 4$. If we multiply $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^{*}D^{-1}$ by A_1B_1 from the right side, we get $A_1A_1^{*}D^{-1}A_1 = A_1$. Thus, 4 holds.

Finally, we prove $4 \Rightarrow 2$. If $A_1A_1^*D^{-1}A_1 = A_1$ and $(A_1A_1^*D^{-1}) = 0$, then $A_1A_1^*A_2 = DA_1 = A_1A_1^*A_1 + A_2A_1^*A_2$, implying that $A_2A_1^*A_1=0$. Hence, $\mathcal{R}(A_1)\subset\mathcal{N}(A_2A_1^*)=\mathcal{N}(A_1^*)$, so $A_1^*A_1=0$. Thus, 2 holds. Notice that the equivalence 3 \Leftrightarrow 4 is proved in [8], also.

- (b) 1. $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow (A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A^{\dagger}D^{-1}A_1B_1$, Moreover, $(A_1B_1)^{\dagger}A_1B_1$ is Hermitian, so $[B_1B^{\dagger}, A^{\dagger}D^{-1}A_1] =$ 2. $ABB^* = ABB^*A^{\dagger}A \Leftrightarrow A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^* \text{ and } A_1B_1B_1^*A_1^*D^{-1}A_2 = 0.$
 - 3. Notice that $\mathcal{R}(BB^*A^*) \subset \mathcal{R}(A^*)$ if and only if $A^{\dagger}ABB^*A^* = BB^*A^*$, which is equivalent to $ABB^*A^{\dagger}A = ABB^*$. Hence,
 - 4. The Penrose equations imply that: $B^{\dagger}A^{\dagger} \in (AB)[1,2,4] \Leftrightarrow A_1A^{\dagger}D^{-1}A_1 = A_1$ and $[B_1B^{\dagger},A^{\dagger}D^{-1}A_1] = 0$. We prove $1 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$.
- Suppose that 1 holds. If we multiply $(A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$ by A_1B_1 from the left side, we obtain $A_1 =$ $A_1A_1^*D^{-1}A_1$, Furthermore, $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$ holds. Therefore, $1 \Rightarrow 4$. Suppose that 4 holds. Obviously, $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1A_1^*D^{-1}A_1B_1B_1^* = A_1B_1B_1^*$. Thus, the first equality of 2 holds. The
- second equality of 2 also holds, since $A_1^*D^{-1}A_2 = 0 \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1$, which is shown in the proof of Theorem 2.1. Here we use again $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$. Consequently, $4 \Rightarrow 2$. In order to prove that $2 \rightarrow 1$, we multiply $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ by $(A_1B_1)^{\dagger}$ from the left side. It follows
- lows that $B_1^*A_1^*D^{-1}A_1 = (A_1B_1)^{\dagger}A_1B_1B_1^*$, so $(A_1B_1)^{\dagger}A_1B_1 = B_1^*A_1^*D^{-1}A_1(B_1^*)^{-1}$ which is equivalent to $(A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_1B_2 = (A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_$ $B_1^{-1}A_1^*D_1^{-1}A_1B_1$. Hence, $2 \Rightarrow 1$.

Notice that 3 oo 4 is also proved in [8]. Finally, the part (c) follows from the parts (a) and (b). We also prove the following result

Theorem 2.3. Let X. Y. Z be Hilbert spaces, and let A e. C.(Y. Z). B e. C.(X. Y) be such that A. B. AB have closed ranges. Then we

 $(AB(AB)^{\dagger}A = ABB^{\dagger} \Leftrightarrow A^*ABB^{\dagger} = BB^{\dagger}A^*A \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1, 2, 3)$ $(b^{\dagger}B(AB)^{\dagger}AB = A^{\dagger}AB \Leftrightarrow A^{\dagger}ABB^* = BB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)[1, 2, 4];$ The following three statements are equivalent:

 $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ $AB(AB)^{\dagger}A = ABB^{\dagger}$ and $B(AB)^{\dagger}AB = A^{\dagger}AB$: A*ARRT - RRTA*A and ATARR* - RR*ATA

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent expressions, in the terms of A_1 , A_2 and B_1 , for our assumptions.

Theorem A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} \; = \; (A^{\dagger}AB)^{\dagger}A^{\dagger} \; = \; B^{\dagger}A^{\dagger} \quad \Rightarrow \quad (AB)^{\dagger} \; = \; B^{\dagger}A^{\dagger}$$

Theorem A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into

$$(ab)^{\dagger} - b^{\dagger}a^{\dagger} \in (f_1, \dots, f_{44})$$

Theorem A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into

Proof
$$(ab)^{\dagger} - b^{\dagger}a^{\dagger} \in (f_1, \dots, f_{44})$$

Theorem A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into

Proof
$$(ab)^{\dagger} - b^{\dagger}a^{\dagger} \in (f_1, \dots, f_{44})$$

$$\dots = (ab)^{\dagger}abb^{\dagger}f_{7}(ab)^{\dagger}b(a^{\dagger}ab)^{\dagger}b(a^{\dagger}ab)^{\dagger}(abb^{\dagger})^{\dagger}$$

$$= (ab)^{\dagger}abb^{\dagger}f_{5}b(a^{\dagger}ab)^{\dagger}b(a^{\dagger}ab)^{\dagger}(abb^{\dagger})^{\dagger}$$

$$= (ab)^{\dagger}af_{22}a^{\dagger}ab(a^{\dagger}ab)^{\dagger}(abb^{\dagger})^{\dagger} + \dots$$

Theorem A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into

Proof
$$(ab)^\dagger - b^\dagger a^\dagger \in (f_1, \dots, f_{44})$$

$$\dots - (ab)^\dagger abb^\dagger f_7 (ab)^\dagger b (a^\dagger ab)^\dagger b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger$$

$$- (ab)^\dagger abb^\dagger f_5 b (a^\dagger ab)^\dagger b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger$$

$$- (ab)^\dagger a f_{22} a^\dagger a b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger + \dots$$

Another proof

$$\begin{split} (ab)^\dagger - b^\dagger a^\dagger &= f_{21} - f_{10} + b^\dagger f_{14} - f_{12}(ab)^\dagger - b^\dagger (abb^\dagger)^\dagger f_{11} + b^\dagger (abb^\dagger)^\dagger f_{15} \\ &+ (a^\dagger ab)^\dagger a^\dagger f_9(ab)^\dagger - b^* f_{23}((ab)^\dagger)^* (ab)^\dagger - f_{21} ab(ab)^\dagger + f_{22} ab(ab)^\dagger \\ &- f_{39}(a^\dagger)^* ((ab)^\dagger)^* (ab)^\dagger + b^\dagger (abb^\dagger)^\dagger ((abb^\dagger)^\dagger)^* (b^\dagger)^* f_{31} - b^\dagger f_{14} d^* b^* (a^\dagger)^* \\ &+ (a^\dagger ab)^\dagger a^\dagger ab f_{12}(ab)^\dagger - b^\dagger (abb^\dagger)^\dagger f_{15}((ab)^\dagger)^* b^* (a^\dagger)^* \\ &+ f_{20} b^* (a^\dagger)^* ((ab)^\dagger)^* (ab)^\dagger + (a^\dagger ab)^\dagger a^\dagger abb^* f_{23}((ab)^\dagger)^* (ab)^\dagger \end{split}$$

Theorem A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into

Proof
$$(ab)^\dagger - b^\dagger a^\dagger \in (f_1, \dots, f_{44})$$

$$\dots - (ab)^\dagger abb^\dagger f_7(ab)^\dagger b(a^\dagger ab)^\dagger b(a^\dagger ab)^\dagger (abb^\dagger)^\dagger$$

$$- (ab)^\dagger abb^\dagger f_5 b(a^\dagger ab)^\dagger b(a^\dagger ab)^\dagger (abb^\dagger)^\dagger$$

$$- (ab)^\dagger a f_{22} a^\dagger a b(a^\dagger ab)^\dagger (abb^\dagger)^\dagger + \dots$$

Another proof

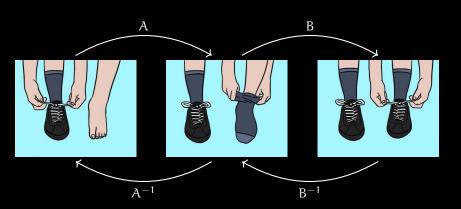
$$\begin{split} (\alpha b)^{\dagger} - b^{\dagger} \alpha^{\dagger} &= f_{21} - f_{10} + b^{\dagger} f_{14} - f_{12} (\alpha b)^{\dagger} - b^{\dagger} (\alpha b b^{\dagger})^{\dagger} f_{11} + b^{\dagger} (\alpha b b^{\dagger})^{\dagger} f_{15} \\ &+ (\alpha^{\dagger} \alpha b)^{\dagger} \alpha^{\dagger} f_{9} (\alpha b)^{\dagger} - b^{*} f_{23} ((\alpha b)^{\dagger})^{*} (\alpha b)^{\dagger} - f_{21} \alpha b (\alpha b)^{\dagger} + f_{22} \alpha b (\alpha b)^{\dagger} \\ &- f_{39} (\alpha^{\dagger})^{*} ((\alpha b)^{\dagger})^{*} (\alpha b)^{\dagger} + b^{\dagger} (\alpha b b^{\dagger})^{\dagger} ((\alpha b b^{\dagger})^{\dagger})^{*} (b^{\dagger})^{*} f_{31} - b^{\dagger} f_{14} \, d^{*} b^{*} (\alpha^{\dagger})^{*} \\ &+ (\alpha^{\dagger} \alpha b)^{\dagger} \alpha^{\dagger} \alpha b f_{12} (\alpha b)^{\dagger} - b^{\dagger} (\alpha b b^{\dagger})^{\dagger} f_{15} ((\alpha b)^{\dagger})^{*} b^{*} (\alpha^{\dagger})^{*} \\ &+ f_{20} b^{*} (\alpha^{\dagger})^{*} ((\alpha b)^{\dagger})^{*} (\alpha b)^{\dagger} + (\alpha^{\dagger} \alpha b)^{\dagger} \alpha^{\dagger} \alpha b b^{*} f_{23} ((\alpha b)^{\dagger})^{*} (\alpha b)^{\dagger} \end{split}$$

Syzygies

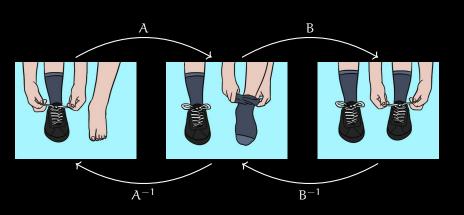
$$\forall A,B,X,Y \,:\, (AX=1 \,\wedge\, BY=1) \,\,\Rightarrow\,\, ABXY=1$$

The Sock-Shoe-Principle

The Sock-Shoe-Principle



The Sock-Shoe-Principle



$$(AB)^{-1} = B^{-1}A^{-1}$$

$$\forall A,B,X,Y \; : \; (AX=1 \; \land \; BY=1) \; \Rightarrow \; ABXY=1$$

$$\forall A, B, X, Y : (AX = 1 \land BY = 1) \Rightarrow ABXY = 1$$

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad Y = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\forall A, B, X, Y : (AX = 1 \land BY = 1) \Rightarrow ABXY = 1$$

Plug in and check

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad Y = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\forall A, B, X, Y : (AX = 1 \land BY = 1) \Rightarrow ABXY = 1$$

$$?$$

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad Y = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\forall A, B, X, Y : (AX = 1 \land BY = 1) \Rightarrow ABXY = 1$$

Idea: make ansatz
with matrices
of fixed size

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \quad X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \quad Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$$

$$\forall A,B,X,Y: (AX=1 \ \land \ BY=1) \ \Rightarrow \ ABXY=1$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \qquad \begin{array}{c} \text{SAT solving} \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \quad X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \quad Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$$

$$\forall A,B,X,Y \ : \ (AX=1 \ \land \ BY=1) \ \Rightarrow \ ABXY=1$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \begin{array}{c} \text{SAT solving} \\ + \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad Y = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\forall A,B,X,Y: (AX=1 \ \land \ BY=1) \ \Rightarrow \ ABXY=1$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \begin{array}{c} \text{SAT solving} \\ + \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad Y = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

Does this always work? - No.

$$\forall A,B,X,Y: (AX=1 \ \land \ BY=1) \ \Rightarrow \ ABXY=1$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \begin{array}{c} \text{SAT solving} \\ + \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad Y = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

Does this always work? - No.

Will a better method always work? - No.

$$\forall A,B,X,Y: (AX=1 \ \land \ BY=1) \ \Rightarrow \ ABXY=1$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \begin{array}{c} \text{SAT solving} \\ + \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \quad X = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \quad Y = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$$

Does this always work? - No.

Will a better method always work? - No.

Does this work often enough? - Seems so.

$$\label{eq:Given} \begin{array}{ll} \mbox{Given} & f_1,\dots,f_r \in \mathbb{Z}[x_1,\dots,x_n] \\ \\ \mbox{Compute} & \mbox{a common root of } f_1,\dots,f_r \mbox{ over } \mathbb{Q} \end{array}$$

Given
$$f_1, \ldots, f_r \in \mathbb{Z}[x_1, \ldots, x_n]$$

Compute a common root of f_1, \ldots, f_r over \mathbb{Q}

Idea Compute root over

$$\mathbb{Z}_2 \, \longrightarrow \, \mathbb{Z}_4 \, \longrightarrow \, \mathbb{Z}_8 \, \longrightarrow \, \cdots \, \longrightarrow \, \mathbb{Z}_{2^N} \, \longrightarrow \, \mathbb{Q}$$

Given
$$f_1, \ldots, f_r \in \mathbb{Z}[x_1, \ldots, x_n]$$

Compute a common root of f_1, \ldots, f_r over \mathbb{Q}

Idea Compute root over

$${\color{red}\mathbb{Z}_2} \; \longrightarrow \; {\color{gray}\mathbb{Z}_4} \; \longrightarrow \; {\color{gray}\mathbb{Z}_8} \; \longrightarrow \; \cdots \; \longrightarrow \; {\color{gray}\mathbb{Z}_{2^N}} \; \longrightarrow \; {\color{gray}\mathbb{Q}}$$

Reading each x_i as a boolean variable, \cdot as \wedge , and + as XOR, the problem becomes a prop. formula. Use SAT solver to compute solution.

Given
$$f_1, \dots, f_r \in \mathbb{Z}[x_1, \dots, x_n]$$

Compute a common root of f_1, \ldots, f_r over \mathbb{Q}

Idea Compute root over

$${\color{red}\mathbb{Z}_2} \; \longrightarrow \; {\color{gray}\mathbb{Z}_4} \; \longrightarrow \; {\color{gray}\mathbb{Z}_8} \; \longrightarrow \; \cdots \; \longrightarrow \; {\color{gray}\mathbb{Z}_{2^N}} \; \longrightarrow \; {\color{gray}\mathbb{Q}}$$

Reading each x_i as a boolean variable, \cdot as \wedge , and + as XOR, the problem becomes a prop. formula. Use SAT solver to compute solution.

Given
$$f_1, \ldots, f_r \in \mathbb{Z}[x_1, \ldots, x_n]$$

Compute a common root of f_1, \ldots, f_r over \mathbb{Q}

Idea Compute root over

$$\mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \longrightarrow \mathbb{Z}_8 \longrightarrow \cdots \longrightarrow \mathbb{Z}_{2^N} \longrightarrow \mathbb{Q}$$

Reading each x_i as a boolean variable, \cdot as \wedge , and + as XOR, the problem becomes a prop. formula. Use SAT solver to compute solution.

Given a root over \mathbb{Z}_{2^n} , we can lift it to a root over $\mathbb{Z}_{2^{n+1}}$ by linear algebra (Hensel lifting).

Given
$$f_1, \ldots, f_r \in \mathbb{Z}[x_1, \ldots, x_n]$$

Compute a common root of f_1, \ldots, f_r over \mathbb{Q}

Idea Compute root over

$$\mathbb{Z}_2 \, \longrightarrow \, \mathbb{Z}_4 \, \longrightarrow \, \mathbb{Z}_8 \, \longrightarrow \, \cdots \, \longrightarrow \, \mathbb{Z}_{2^N} \, \longrightarrow \, \mathbb{Q}$$

Reading each x_i as a boolean variable, \cdot as \wedge , and + as XOR, the problem becomes a prop. formula. Use SAT solver to compute solution.

Given a root over \mathbb{Z}_{2^n} , we can lift it to a root over $\mathbb{Z}_{2^{n+1}}$ by linear algebra (Hensel lifting).

Once we have a root over \mathbb{Z}_{2^N} with N large enough, we can perform rational reconstruction to recover a root over \mathbb{Q} .

Algebraic proof methods for identities of matrices and operators: improvements of Hartwig's triple reverse order law

Dragana S. Cvetković-Ilić¹, Clemens Hofstadler², Jamal Hossein Poor², Jovana Milošević¹, Clemens G. Raab², and Georg Regensburger²

¹Department of Mathematics, Faculty of Sciences and Mathematics,

University of Niš, Serbia

²Institute for Algebra, Johannes Kepler University Linz, Austria

Theorem 2.1. [34] Let A, B, C be complex matrices such that ABC is defined and let $P = A^{\dagger}ABCC^{\dagger}$, $Q = CC^{\dagger}B^{\dagger}A^{\dagger}A$. The following conditions are equivalent:

(i) $(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$;

(ii) Q ∈ P{1,2} and both of A*APQ and QPCC* are Hermitian;

 $(iii) \ \ Q \in P\{1,2\} \ \ and \ both \ \ of \ A^*APQ \ \ and \ \ QPCC^* \ \ are \ EP;$

 $(iv) \ \ Q \in P\{1\}, \ \mathcal{R}(A^*AP) = \mathcal{R}(Q^*) \ \ and \ \mathcal{R}(CC^*P^*) = \mathcal{R}(Q);$

 $(v) \ PQ = (PQ)^2, \ \mathcal{R}(A^*AP) = \mathcal{R}(Q^*) \ and \ \mathcal{R}(CC^*P^*) = \mathcal{R}(Q).$

Algebraic proof methods for identities of matrices and operators: improvements of Hartwig's triple reverse order law

Dragana S. Cvetković-Ilić¹, Clemens Hofstadler², Jamal Hossein Poor², Jovana Milošević¹, Clemens G. Raab², and Georg Regensburger²

¹Department of Mathematics, Faculty of Sciences and Mathematics,

University of Niš, Serbia

²Institute for Algebra, Johannes Kepler University Linz, Austria

Theorem 2.1. [34] Let A, B, C be complex matrices such that ABC is defined and let $P = A^{\dagger}ABCC^{\dagger}, \ Q = CC^{\dagger}B^{\dagger}A^{\dagger}A$. The following conditions are equivalent:

- (i) $(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$;
- (ii) $Q \in P\{1,2\}$ and both of A^*A QPCC* are Her
- (iii) $Q \in P\{1,2\}$ and both of A^*A and $QPCC^*$ are EP;
- (iv) $Q \in P\{1\}$, $\mathcal{R}(A^*AP) = \mathcal{R}(I)$ and $\mathcal{R}(CC^*P^*) = \mathcal{R}(I)$
- (v) $PQ = (PQ)^2$, $R(A^*AP) = R(Q^*)$ and $R(CC^*P^*) = R(Q)$.

Algebraic proof methods for identities of matrices and operators: improvements of Hartwig's triple reverse order law

Dragana S. Cvetković-Ilić¹, Clemens Hofstadler², Jamal Hossein Poor², Jovana Milošević¹, Clemens G. Raab², and Georg Regensburger²

¹Department of Mathematics, Faculty of Sciences and Mathematics.

University of Niš, Serbia ²Institute for Algebra, Johannes Kepler University Linz, Austria

Theorem 2.1. [34] Let A, B, C be complex matrices such that ABC is defined and let $P = A^{\dagger}ABCC^{\dagger}$, $Q = CC^{\dagger}B^{\dagger}A^{\dagger}A$. The following conditions are equivalent:

- (i) $(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$:
- (ii) $Q \in P\{1, 2\}$ and both of A^* . QPCC* are He
- (iii) $Q \in P\{1,2\}$ and both of A^*A and $QPCC^*$ are EP;
- (iv) $Q \in P\{1\}$, $R(A^*AP) = R(I)$ and $R(CC^*P^*) = R(I)$

Algebraic proof methods for identities of matrices and operators: improvements of Hartwig's triple reverse order law

Dragana S. Cvetković-Ilić¹, Clemens Hofstadler², Jamal Hossein Poor², Jovana Milošević¹, Clemens G. Raab², and Georg Regensburger²

¹Department of Mathematics, Faculty of Sciences and Mathematics,

University of Niš, Serbia

²Institute for Algebra, Johannes Kepler University Linz, Austria

Theorem 2.1. [34] Let A,B,C be complex matrices such that ABC is defined and let $P=A^{\dagger}ABCC^{\dagger},\ Q=CC^{\dagger}B^{\dagger}A^{\dagger}A$. The following conditions are equivalent:

- (i) $(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$;
- (ii) $Q \in P\{1,2\}$ and both of A^*A and $QPCC^*$ are E
- (iii) $Q \in P\{1, 2\}$ and both of A^*A and $QPCC^*$ are EP
- $(iv) \ \ Q \in P\{1\}, \ \mathcal{R}(A^*AP) = \mathcal{R}(G^*) \ \ and \ \mathcal{R}(CC^*P^*) = \mathcal{R}(G^*)$
- $(v) \ PQ = (PQ)^2, \ \mathcal{R}(A^*AP) = \mathcal{R}(Q^*) \ and \ \mathcal{R}(CC^*P^*) = \mathcal{R}(Q)$

Algebraic proof methods for identities of matrices and operators: improvements of Hartwig's triple reverse order law

Dragana S. Cvetković-Ilić¹, Clemens Hofstadler², Jamal Hossein Poor², Jovana Milošević¹, Clemens G. Raab², and Georg Regensburger²

¹Department of Mathematics, Faculty of Sciences and Mathematics.

University of Niš, Serbia ²Institute for Algebra, Johannes Kepler University Linz, Austria

Theorem 2.1. [34] Let A, B, C be complex matrices such that ABC is defined and let $P = A^{\dagger}ABCC^{\dagger}$, $Q = CC^{\dagger}B^{\dagger}A^{\dagger}A$. The following conditions are equivalent:

(i)
$$(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$$
:

(ii)
$$Q \in P\{1,2\}$$
 and both of $A^*A = QPCC^*$ are E

(iii) $Q \in P\{1,2\}$ and both of A^*A and $QPCC^*$ are EP

(iv) $Q \in P\{1\}$, $R(A^*AP) = R(Q^*)$ and $R(CC^*P^*) = R(Q^*)$

(v) $PO = (PO)^2$, $R(A^*AP) = R(O^*)$ and $R(CC^*P^*) = R(O)$

Example 2.5. Let

$$A = \left[\begin{array}{ccc} -3 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \ \ B = \left[\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right], \ \ C = \frac{1}{3} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right].$$

Then

$$A^\dagger = \frac{1}{17} \left[\begin{array}{ccc} -3 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{array} \right], \quad B^\dagger = \left[\begin{array}{ccc} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{array} \right], \quad C^\dagger = C.$$

If we define P and O as in Theorem 2.1, we get that PO = 0 is idempotent and $R(A^*AP) \subseteq R(O^*)$ and $R(CC^*P^*) \subseteq R(O)$ but $(ABC)^{\dagger} \neq C^{\dagger}B^{\dagger}A^{\dagger}$.

Algebraic proof methods for identities of matrices and operators: improvements of Hartwig's triple reverse order law

Dragana S. Cvetković-Ilić¹, Clemens Hofstadler², Jamal Hossein Poor²,
Joyana Milošević¹, Clemens G. Raah², and Georg Regensburger²

¹Department of Mathematics, Faculty of Sciences and Mathematics, University of Niš, Serbia

²Institute for Algebra, Johannes Kepler University Linz, Austria

sage: from operator_gb import *

sage: F.<a,b,c,...> = FreeAlgebra(QQ)

sage: assumptions = [a*b*a - a,...]

sage: claim = abc_dag - c_dag*b_dag*a_dag

sage: counterexample(assumptions, claim)

Theorem 2.1. [34] Let A, B, C be complex matrices such that ABC is defined and let $P = A^{\dagger}ABCC^{\dagger}, Q = CC^{\dagger}B^{\dagger}A^{\dagger}A$. The following conditions are equivalent:

(i)
$$(ABC)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$$
:

(i)
$$(ABC)^* \equiv C \cdot B \cdot A^*$$
;
(ii) $Q \in P\{1,2\}$ and both of $A^*A \subseteq QPCC^*$ are $B \subseteq ?$

(iii) $Q \in P\{1,2\}$ and both of A^*A and $QPCC^*$ are EP(iv) $Q \in P\{1\}$, $\mathcal{R}(A^*AP) = \mathcal{R}(Q)$ and $\mathcal{R}(CC^*P^*) = \mathcal{R}(Q)$;

(iv) $Q \in P\{1\}$, $R(A^*AP) = R(Q^*)$ and $R(CC^*P^*) = R(Q^*)$

(v) $PQ = (PQ)^2$, $R(A^*AP) = R(Q^*)$ and $R(CC^*P^*) = R(Q)$

Example 2.5. Let

$$A = \left[\begin{array}{ccc} -3 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \ \ B = \left[\begin{array}{cccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{array} \right], \ \ C = \frac{1}{3} \left[\begin{array}{cccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right].$$

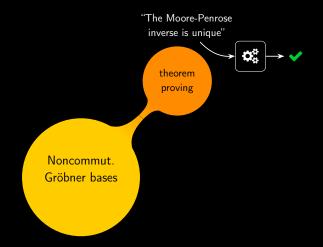
Then

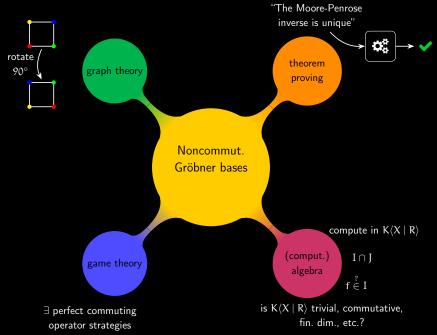
$$A^{\dagger} = \frac{1}{17} \begin{bmatrix} -3 & 0 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}, \quad B^{\dagger} = \begin{bmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}, \quad C^{\dagger} = C.$$

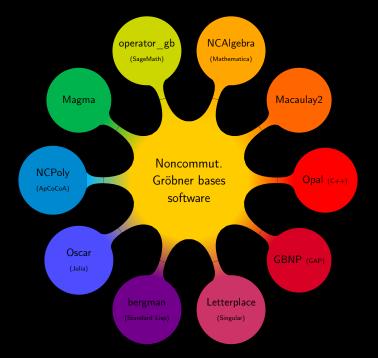
If we define P and Q as in Theorem 2.1, we get that PQ = 0 is idempotent and $R(A^*AP) \subset R(Q^*)$ and $R(CC^*P^*) \subset R(Q)$ but $(ABC)^{\dagger} \neq C^{\dagger}B^{\dagger}A^{\dagger}$.

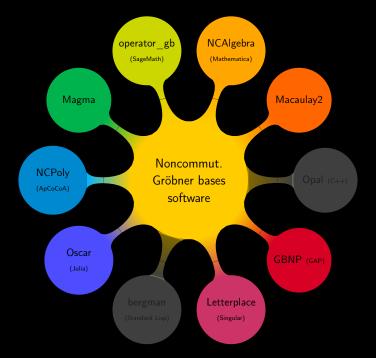
$$\mathbf{A} = \begin{pmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

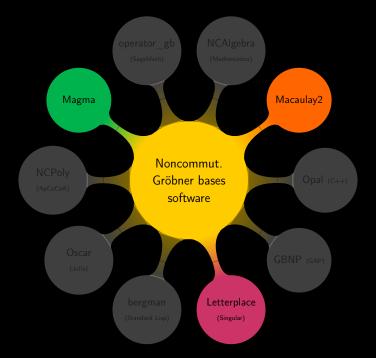
$$\mathtt{A}^\dagger = egin{pmatrix} \mathtt{O} & \mathtt{1} \\ \mathtt{O} & \mathtt{O} \end{pmatrix} \quad \mathtt{B}^\dagger = egin{pmatrix} \mathtt{1} & \mathtt{1} \\ \mathtt{1} & \mathtt{O} \end{pmatrix} \quad \mathtt{C}^\dagger = egin{pmatrix} \mathtt{O} & \mathtt{O} \\ \mathtt{1} & \mathtt{O} \end{pmatrix}$$

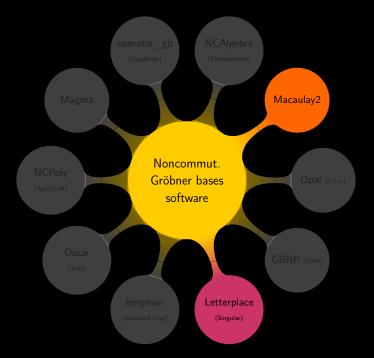


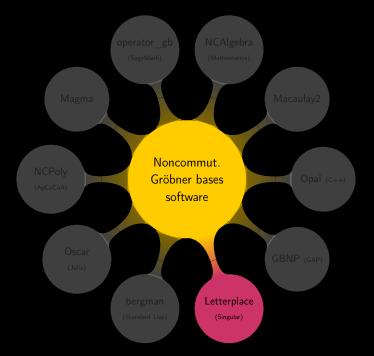




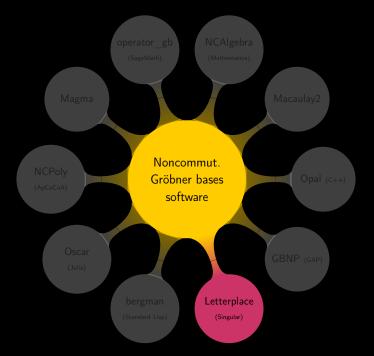


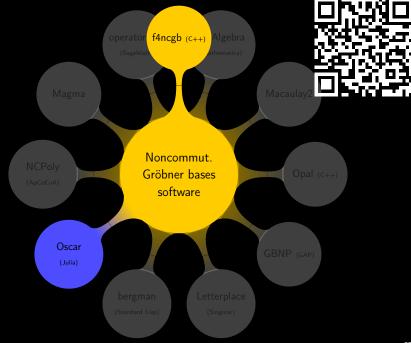






Example	Letterplace	Macaulay2	f4ncgb		
			1 core	4 cores	16 cores
4nilp5s-10	1282	875	150	79	63
braid3-16	18 953	14 291	105	34	18
braidX-18	>43 200	>43 200	1977	601	260
braidXY-12	1847	18 887	62	52	52
holt_G3562h-17	>43 200	>43 200	25 021	12 671	6824
lascala_neuh-13	171	37	9	5	
lp1-15	24 166	33 923	266	179	155
lv2d10-100	>43 200	24 930	48	27	47
malle_G12h-100	4142	163	89	74	73
(Timings in soc)					





Algebraic Automated Theorem Proving

Ш

Proving statements about linear operators with computer algebra

Linear operators \rightarrow noncommutative polynomials in free algebra

 $oxed{\mathsf{Operator}}$ statement $oldsymbol{ o}$ ideal membership $oxed{\mathsf{f}} \overset{?}{\in} \mathrm{I}$

 ${\sf Proof} \quad \to \quad {\sf explicit \ linear \ combination}$

We can also...

- ... compute short(est) proofs of true statements.
- ... compute counterexamples for false statements.

Hi there! 😊 What can I help you with today?

ዐ ዐ ዐ ዐ ዓ ን S <

How would you prove or disprove a statement about linear operators?

I would use computer algebra.

ው ው ወ ቀ ው ኤ c <