f4ncgb: High Performance Gröbner Basis Computations in Free Algebras

Maximilian Heisinger and Clemens Hofstadler

CASC 2025 Dubai, 27 November 2025

Institute for Symbolic Artificial Intelligence, Johannes Kepler University Linz, Austria

noncommutative = really noncommutative

noncommutative = really noncommutative

= no commutation rules

noncommutative = really noncommutative

= no commutation rules

= free algebra $K\langle x_1, \dots, x_n \rangle$

noncommutative = really noncommutative

= no commutation rules

= free algebra $K\langle x_1, \dots, x_n \rangle$

Noncom. polynomial $c_1 \cdot w_1 + \cdots + c_d \cdot w_d \in K(x_1, \dots, x_n)$

 $\begin{array}{rcl} & & & & \\ & & & & \\ & & & = & \text{no commutation rules} \\ & & & & = & \text{free algebra } K\langle x_1, \dots, x_n \rangle \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

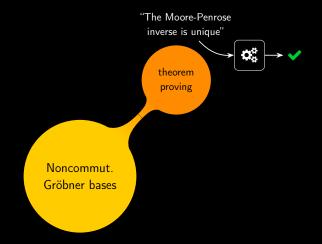
noncommutative = really noncommutative = no commutation rules = free algebra
$$K\langle x_1,\ldots,x_n\rangle$$
 $\in K$

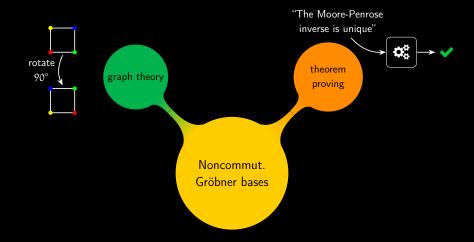
Noncom. polynomial $c_1w_1+\cdots+c_dw_d\in K\langle x_1,\ldots,x_n\rangle$ words over x_1,\ldots,x_n

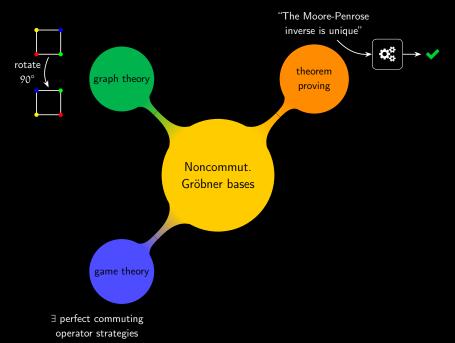
Example $xyyx+2xy-yx-2\in \mathbb{Q}\langle x,y\rangle$

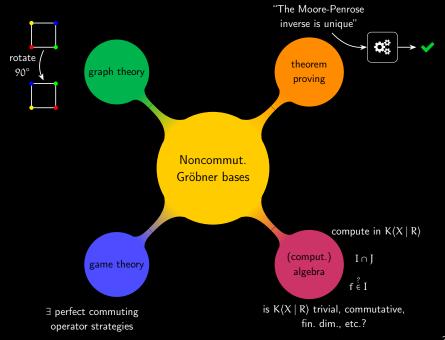
noncommutative = really noncommutative = no commutation rules = free algebra
$$K(x_1,\ldots,x_n)$$
 $\in K$

Noncom. polynomial $\underbrace{c_1w_1+\cdots+c_dw_d}_{\text{words over }x_1,\ldots,x_n}$ $\in K(x_1,\ldots,x_n)$ words over $\underbrace{x_1,\ldots,x_n}_{\text{mode over }x_1,\ldots,x_n}$ Example $\underbrace{xyyx+2xy-yx-2}_{\text{Multiplication}} \in \mathbb{Q}(x,y)$ Multiplication = concatenation of words

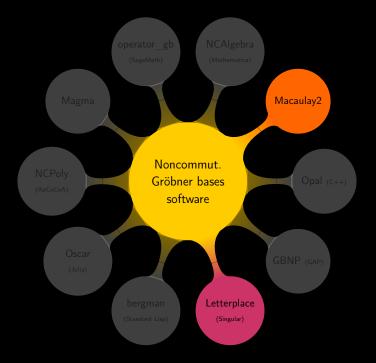

 $(xy-1)\cdot(yx+2) = xyyx+2xy-yx-2$

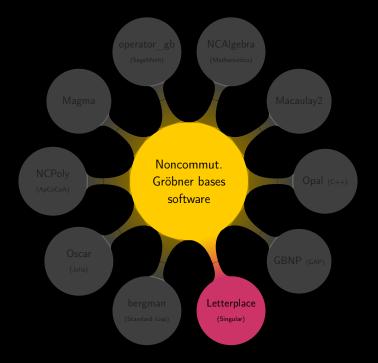

noncommutative = really noncommutative
$$= \text{ no commutation rules} \\ = \text{ free algebra } K\langle x_1, \dots, x_n \rangle \\ \in K \\ \text{Noncom. polynomial} \\ \text{C1-w1} + \dots + \text{Cd-wd} \in K\langle x_1, \dots, x_n \rangle \\ \text{words over } x_1, \dots, x_n \\ \\ \text{Example} \quad xyyx + 2xy - yx - 2 \in \mathbb{Q}\langle x, y \rangle \\ \\ \text{Multiplication} \quad = \quad \text{concatenation of words} \\$$


Noncomm. GB theory = comm. GB theory - finiteness


 $(xy-1) \cdot (yx+2) = xyyx + 2xy - yx - 2$

Noncommut. Gröbner bases





An Example

Consider the ideal generated by $f_1, f_2 \in \mathbb{Q}(x, y, z)$

$$f_1 = xy + yz$$
 $f_2 = x^2 + xy - yx - y^2$.

An Example

 $f_2 = x^2 + xy - yx - y^2$

Consider the ideal generated by $f_1, f_2 \in \mathbb{Q}(x, y, z)$

 $f_1 = xy + yz$

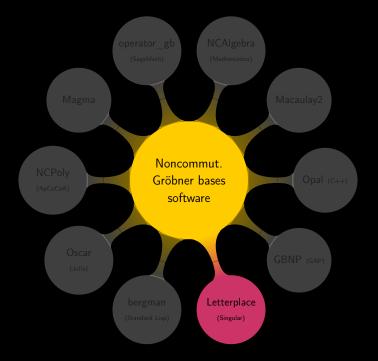
(6080) - 16-s(6071)s(6190)s(6272)s(6367)s(6468)-s(6538) s(6632)-s(6692) - s(6783)-s(6834) s(6925)-s(698) - s(7062)-s(7088) - s(7180)-s(7204) (7204) (7204) s(724)-s(7314) (7306) - s(7411)-s(7428) - s(7641)-s(7531)-s(7531)-s(7541) - (7800) - s(7937)-s(7952) - (7909)- (7909) - (7909)-s(7314) s(8998)s(8184)s(8293)s(8408)-s(8490) - s(8597)-s(8668) - s(8771)-s(8832) - s(8934)-s(8986) - s(9999)-s(9134) s(9222)-s(9252) - s(9347)-s(9374) s(9479)-s(95800) - s(9377)-s(9912) - s(9397)-s(9912)

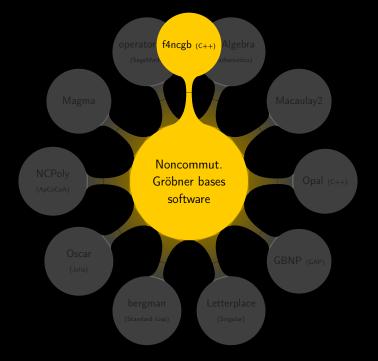
	(59100)
	(59000)
27-s(59265)s(59615)s(59895)s(60199)s(60509)-s(60 	0766) s (61858) - s (61294) s (61872) - s (61788) s (62085) - s (6228 (63100) s (63358) - s (63584) (63500) s (63757) - s (s (64826) - s (64630) s (64688) - s (64948) s (65926) s (6
(66200)s(66558)-s(66598)	
() ~(/7///)	(6/200)s(6 s
s(68010)-s(680	036)(67900)(68000)(67900)
s(68389)-s(68414)(68400)	
08300)(68300)	(
68700)s(69168)s(69168)-	-(68600)
s(69168)-	-\$ _

	56540 <i>)</i>			
s(58874)-s(58898)		(58400)		(589
00)				(58700)
s(59239)-s(59264)				-(59200)
		(!	59100)	
		-(59000)		
27-s(59265)s(59615)s(59895)s(6019	9)s(60509)-s(60766)s(63	L058)-s(61294)s(61572)-s(61788)	s(62055)-s(62252)-
s(62511)-s(62690)s(62	944)-s(63106)(63100))s(63358)-s(63	504)(63500)	s(63757)-s(638
88)s(64145)-s(64262)	s(64526)-s	6(64630)	s(64868)-	s(64948)
s(65200)-s(65270)	s(65535)-s(655	596)		-s(65873)-s(65926)
(65900)	s(66214)-s(66260))		
(66200)s(66558)-s(66598)	(((000)			s(66909)-s(66944)
	-(66900)		s(6/269)-s(6/300) s(6763
6)-s(67664)		(67600)	(0/200)	\$(8/83
	-s(68010)-s(68036)	(07000)	(68999)	
		(47000)		
s(68389)-s(68414)(68400)			
(68300)				(682
00)s(68775)-s(68800)68700)				(
68700)				(68600)
	s(69168)-s			
	(351300)			
s(352009)-s(3520	144)		(352000)	
		(351900)		
	(351800)			
(351700	1)			s (
475)-s(352510)(352500)				
(352400)				(352300)-
			(352)	200)
	.)-s(352976)	(35210	0)	
(352941	.)-\$(3529/6)			(252222)
(352900)			(252700)	(352800)
		(352600)	(352/00)	
	(352500)	(332000)		
-s(353405)-s(353440)	(352	3400)		
	(353300)			
(353200)				
(353100)				(353000)-
(353100)			(352	900)
	s(353863)-s(353898)			
(35	3800)			5
(353700)				

			((22 2100)	
	(190	0)			
(1800) -(1700)					(1400)
				(1500)	
		(4000)	(1400)		
(1206))	(1300)			
(1100)					(1000)
			(800)	(900)	
(6		(700)			
(500)					(400)
		(100)	(200)		
product criterion:0 chain criter shift V criterion:648631356 Auf Wiedersehen. singular demo.sing 4511.08s use (base) clemenshofstadler@Clemens	er 21.85s syst		58.99 total		

An Example


```
(base) clemenshofstadler@Clemenss-MacBook-Air demo % ./f4ncqb -m 10000 -d 75 demo.ms > demo.gb
[f4ncqb] ==== Input Parameters ====
[f4ncgb] Characteristic:
[f4ncqb] Max. Iterations:
                            10000
[f4ncgb] Max. amb. degree: 75
[f4ncgb] Monomial order:
                            z < y < x
[f4ncqb] Nr. threads:
[f4ncgb] Output file:
                            None. Writing output to console.
[f4ncqb] Proof logging:
                            off
[f4ncgb] Tracer:
                            on
[f4ncgb] PID of F4NCGB:
                            11942
[f4ncgb] ==== Starting Gröbner Basis Computation ====
```


An Example

```
(base) clemenshofstadler@Clemenss-MacBook-Air demo % ./f4ncqb -m 10000 -d 75 demo.ms > demo.gb
[f4ncgb] ==== Input Parameters ====
[f4ncgb] Characteristic:
[f4ncqb] Max. Iterations:
                            10000
[f4ncgb] Max. amb. degree: 75
[f4ncqb] Monomial order:
                           z < y < x
[f4ncqb] Nr. threads:
[f4ncgb] Output file:
                            None. Writing output to console.
[f4ncqb] Proof logging:
                            off
[f4ncgb] Tracer:
                            on
[f4ncgb] PID of F4NCGB:
                            11942
[f4ncqb] ==== Starting Gröbner Basis Computation ====
[f4ncqb] ==== Basis computation finished ====
[f4ncab]
[f4ncgb] maximum resident set size:
                                                  245744.00 MB
[f4ncqb] store find calls:
                                                    13478136
[f4ncab] store find hits:
                                                     88.36 %
[f4ncgb] parse input:
                                                      0.00 (0.00 %)
[f4ncgb] computing ambiguities:
                                                     2.06 (25.76 %)
[f4ncqb] computing overlaps:
                                                     0.34 (4.20 %)
[f4ncab] computing inclusions:
                                                     0.04 (0.52 %)
[f4ncgb] handling critical pairs:
                                                      0.44 (5.47 %)
[f4ncgb] symbolic preprocessing:
                                                      0.42 (5.26 %)
[f4ncqb] linear algebra:
                                                     4.28 (53.44 %)
[f4ncqb] Gauss elimination:
                                                     3.95 (49.37 %)
[f4ncgb] reduce (CPU-time):
                                                     3.81 (47.60 %) /#t: 3.81 (47.60 %)
[f4ncgb] CRT:
                                                      0.00 (0.02 %)
[f4ncqb] rat. reconstruction:
                                                      0.00 (0.02 %)
[f4ncqb] construct new elements:
                                                      0.02 (0.24 %)
[f4ncab] other:
                                                      0.00 (0.00 %)
[f4ncqb]
[f4ncqb] total process time:
                                                      8.01 seconds
(base) clemenshofstadler@Clemenss-MacBook-Air demo %
```

Example	Letterplace				
Example Letterplace	Letterplace	1 core	4 cores	16 cores	
4nilp5s-10	1282	150	79	63	
braid3-16	18 953	105	34	18	
braidXY-12	1847	62	52	52	
holt_G3562h-17	>43 200	25 021	12 671	6824	
lascala_neuh-13	171	9	5		
lp1-15	24 166	266	179	155	
lv2d10-100	>43 200	48	27	47	
malle_G12h-100	4142	89	74	73	

(Timings in sec)

f4ncgb

Open-source C++ library that ports commutative advancements to the noncommutative setting.

- Gröbner basis computation in $\mathbb{Q}\langle X\rangle$ and $\mathbb{Z}_p\langle X\rangle$ for prime $p<2^{31}$
- Several orders of magnitude faster than current state of the art
- Proof logging via cofactor representations
- Also part of SYMBOLIC TOOLS

Data structures

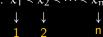
- Monomials are shared
- Coefficients are shared
- Prefix tree for divisions

Algorithms

- Noncomm. F4 algorithm
- Sparse linear algebra (multi-modular, parallelized, probabilistic)
- Proof logging

Data structures

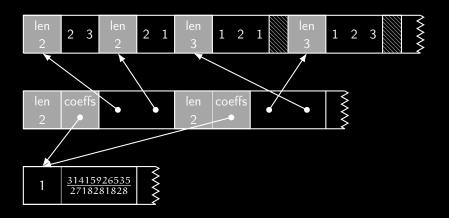
- Monomials are shared
- Coefficients are shared
- Prefix tree for divisions


Algorithms

- Noncomm. F4 algorithm
- Sparse linear algebra (multi-modular, parallelized, probabilistic)
- Proof logging

Monomials & Polynomials

Represent vars by index according to mon. order: $x_1 < x_2 < \cdots < x_n$

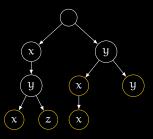


len 2	3 len 2	2 1	len 3	1 2		len 3	1	2	3	~ ~ ~ ~
----------	---------	-----	----------	-----	--	----------	---	---	---	---------

$1 \frac{31415926535}{2718281828}$

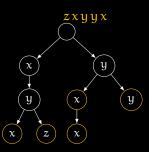
Monomials & Polynomials

Represent vars by index according to mon. order: $x_1 < x_2 < \dots < x_n$ $\qquad \downarrow \qquad \downarrow$



Monomial Divisibility Tests

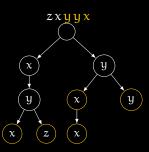
Observation: divisor candidates are always the same (lm's of the GB) Exploit this information → keep prefix tree of all leading monomials


Observation: divisor candidates are always the same (Im's of the GB) Exploit this information → keep prefix tree of all leading monomials

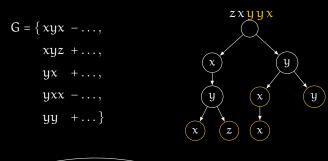
$$G = \{ xyx - \dots, \\ xyz + \dots, \\ yx + \dots, \\ yxx - \dots, \\ yy + \dots \}$$

Observation: divisor candidates are always the same (lm's of the GB) Exploit this information \sim keep prefix tree of all leading monomials

$$G = \{ xyx - ..., \\ xyz + ..., \\ yx + ..., \\ yxx - ..., \\ yy + ... \}$$


Observation: divisor candidates are always the same (lm's of the GB) Exploit this information \sim keep prefix tree of all leading monomials

$$G = \{ xyx - \dots, \\ xyz + \dots, \\ yx + \dots, \\ yxx - \dots, \\ yy + \dots \}$$


Observation: divisor candidates are always the same (Im's of the GB) Exploit this information → keep prefix tree of all leading monomials

$$G = \{ xyx - \dots, \\ xyz + \dots, \\ yx + \dots, \\ yxx - \dots, \\ yy + \dots \}$$

Observation: divisor candidates are always the same (Im's of the GB)

Exploit this information → keep prefix tree of all leading monomials

Data structures

- Monomials are shared
- Coefficients are shared
- Prefix tree for divisions

Algorithms

- Noncomm. F4 algorithm
- Sparse linear algebra (multi-modular, parallelized, probabilistic)
- Proof logging

Data structures

- · Monomials are shared
- Coefficients are shared
- Prefix tree for divisions

Algorithms

- Noncomm. F4 algorithm
- Sparse linear algebra (multi-modular, parallelized, probabilistic)
- Proof logging

Given input f_1, \ldots, f_r , write each $g \in GB$ as

$$g = \sum_{j} p_{j} \cdot f_{j} \cdot q_{j}$$
 "cofactor representation"

with $p_j, q_j \in K\langle X \rangle$.

Given input f_1, \ldots, f_r , write each $g \in GB$ as

$$g = \sum_{j} p_{j} \cdot f_{j} \cdot q_{j}$$
 "cofactor representation"

with $p_j, q_j \in K\langle X \rangle$.

Cofactor representations certify ideal membership.

Can be computed during Gaussian elimination:

Given input f_1, \ldots, f_r , write each $g \in GB$ as

$$g = \sum_{j} p_{j} \cdot f_{j} \cdot q_{j}$$
 "cofactor representation"

with $p_j, q_j \in K\langle X \rangle$.

Cofactor representations certify ideal membership.

Can be computed during Gaussian elimination:

$$\begin{pmatrix} - & \mathfrak{p}_1 & - \\ & \vdots & \\ - & \mathfrak{p}_k & - \end{pmatrix} \longrightarrow \mathsf{RRef}$$

Given input f_1, \ldots, f_r , write each $g \in GB$ as

$$g = \sum_{j} p_{j} \cdot f_{j} \cdot q_{j}$$
 "cofactor representation"

with $p_i, q_i \in K\langle X \rangle$.

Cofactor representations certify ideal membership.

Can be computed during Gaussian elimination:

$$T \cdot \begin{pmatrix} - & p_1 & - \\ & \vdots & \\ - & p_k & - \end{pmatrix} = RRef$$

The rows of T give cofactor representations of g_i in terms of f_1, \ldots, f_r and g_1, \ldots, g_{i-1} .

Substitution yields representations w.r.t. f_1, \ldots, f_r (\triangle exp. blowup!)

Data structures

- · Monomials are shared
- Coefficients are shared
- Prefix tree for divisions

Algorithms

- Noncomm. F4 algorithm
- Sparse linear algebra (multi-modular, parallelized, probabilistic)
- Proof logging

f4ncgb

Open-source C++ library that ports commutative advancements to the noncommutative setting.

- Gröbner basis computation in $\mathbb{Q}\langle X \rangle$ and $\mathbb{Z}_p\langle X \rangle$ for prime $p < 2^{31}$
- Several orders of magnitude faster than current state of the art
- Proof logging via cofactor representations
- Also part of

