First-order theorem proving for operator statements

Clemens Hofstadler

joint work with Georg Regensburger and Clemens G. Raab Vienna, 28 November 2024

Institute for Symbolic Artificial Intelligence, JKU Linz, Austria

U N I KASSEL V E R S I T 'A' T

Series Editor KENNETH H. ROSEN

HANDBOOK OF LINEAR ALGEBRA

SECOND EDITION

$$\begin{bmatrix} 2 & 2 & 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Edited by

Leslie Hogben

Definitions:

A Moore-Penrose pseudo-inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is a matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies the following four Penrose conditions:

$$AA^{\dagger}A = A$$
: $A^{\dagger}AA^{\dagger} = A^{\dagger}$: $(AA^{\dagger})^* = AA^{\dagger}$: $(A^{\dagger}A)^* = A^{\dagger}A$.

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp. 105-141] or [RM71, pp. 44-67].

- Every A ∈ C^{m×n} has a unique pseudo-inverse A[†].
 - If A ∈ R^{m×n}, then A[†] is real.
 - 3. If $A \in \mathbb{C}^{m \times n}$ of rank r has a full rank decomposition A = BC, where $B \in \mathbb{C}^{m \times r}$ and $C \in \mathbb{C}^{r \times n}$, then A^{\dagger} can be evaluated using $A^{\dagger} = C^*(B^*AC^*)^{-1}B^*$.
- LH95, p. 38 If A ∈ C^{m×n} of rank r < min{m, n} has an SVD A = UΣV*, then its pseudo-inverse is $A^{\dagger} = V \Sigma^{\dagger} U^*$, where

$$\Sigma^{\dagger} = \text{diag}(1/\sigma_1, ..., 1/\sigma_r, 0, ..., 0) \in \mathbb{R}^{n \times m}$$
.

5. [Hig96, p. 412] The pseudo-inverse A^{\dagger} of $A \in F^{m \times n}$ ($F = \mathbb{C}$ or \mathbb{R}) solves the minimization problem

$$\min_{X \in F^{n \times m}} ||AX - I_m||_F^2.$$

6. $\mathbf{0}_{mn}^{\dagger} = \mathbf{0}_{nm}$ and $J_{mn}^{\dagger} = \frac{1}{mn}J_{nm}$, where $\mathbf{0}_{mn} \in \mathbb{C}^{m \times n}$ is the all 0s matrix and $J_{mn} \in$ $\mathbb{C}^{m \times n}$ is the all 1s matrix.

- 7. If $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} \neq \mathbf{0}$, then $(\mathbf{x}\mathbf{y}^*)^{\dagger} = \frac{\mathbf{y}\mathbf{x}^*}{\|\mathbf{x}\|^2 \|\mathbf{y}\|^2}$.
- 8. If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x}^{\dagger} = \frac{\mathbf{x}^*}{\|\mathbf{x}\|^2}$.
- 9. Let α be a scalar. Denote

Let
$$\alpha$$
 be a scalar. Denote $\alpha^{\dagger} = \{ \begin{matrix} \alpha^{-1}, & \text{if } \alpha \neq 0, \\ 0, & \text{if } \alpha = 0. \end{matrix} \}$

Then

(a) $(\alpha A)^{\dagger} = \alpha^{\dagger} A^{\dagger}$.

(b) $(\operatorname{diag}(\beta_1, \beta_2, \dots, \beta_n))^{\dagger} = \operatorname{diag}(\beta_1^{\dagger}, \beta_2^{\dagger}, \dots, \beta_n^{\dagger})$.

- 10. $(A^{\dagger})^* = (A^*)^{\dagger}$: $(A^{\dagger})^{\dagger} = A$.
- If A is a nonsingular square matrix, then A[†] = A⁻¹.
- If U has orthonormal columns or orthonormal rows, then U[†] = U*.
- 13. If $A = A^*$ and $A = A^2$, then $A^{\dagger} = A$.
- A[†] = A* if and only if A*A is idempotent.
- If A is normal and k is a positive integer, then AA[†] = A[†]A and (A^k)[†] = (A[†])^k.
- If U ∈ C^{m×n} is of rank n and satisfies U[†] = U*, then U has orthonormal columns. If U ∈ C^{m×m} and V ∈ C^{n×n} are unitary matrices, then (UAV)[†] = V*A[†]U*.
- 18. $A^{\dagger} = (A^*A)^{\dagger}A^* = A^*(AA^*)^{\dagger}$. In particular,
 - (a) if A ∈ C^{m×n} (m > n) has full rank n, then A[†] = (A*A)⁻¹A*;
- (b) if A ∈ C^{m×n} (m ≤ n) has full rank m, then A[†] = A*(AA*)⁻¹.
- 19. Let $A \in \mathbb{C}^{m \times n}$. Then

- (a) A[†]A, AA[†], I_n − A[†]A, and I_m − AA[†] are orthogonal projections.
 - (b) $rank(A) = rank(A^{\dagger}) = rank(AA^{\dagger}) = rank(A^{\dagger}A)$.
 - (c) $rank(I_n A^{\dagger}A) = n rank(A)$.
 - (d) $\operatorname{rank}(I_m AA^{\dagger}) = m \operatorname{rank}(A)$.

Inner Product Spaces, Orthogonal Projection, Least Squares

- 20. $AA^{\dagger} = \text{Proj}_{\text{range}(A)}$; $A^{\dagger}A = \text{Proj}_{\text{range}(A)}$.
- 21. Suppose that $A \in F^{m \times n}$, where $F = \mathbb{C}$ or \mathbb{R} . Then
 - (a) range(A) = range(AA*) = range(AA†).
 - (b) $range(A^{\dagger}) = range(A^*) = range(A^*A) = range(A^{\dagger}A)$.

 - (c) ker(A) = ker(A*A) = ker(A†A).
 - (d) ker(A[†]) = ker(A*) = ker(AA*) = ker(AA[†]).
 - (e) range(A[†]A) ⊕ ker(A[†]A) = Fⁿ.
- (f) range(AA[†]) ⊕ ker(AA[†]) = F^m.
- 22. If $A = A_1 + A_2 + \cdots + A_k$, $A^*A_i = 0$, and $A_iA^* = 0$, for all $i, i = 1, \dots, k, i \neq i$. then $A^{\dagger} = A_1^{\dagger} + A_2^{\dagger} + \cdots + A_n^{\dagger}$.
- 23. If A is an $m \times r$ matrix of rank r and B is an $r \times n$ matrix of rank r, then $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- 24. $(A^*A)^{\dagger} = A^{\dagger}(A^*)^{\dagger}$: $(AA^*)^{\dagger} = (A^*)^{\dagger}A^{\dagger}$.
- [Gre66] Each one of the following conditions is necessary and sufficient for (AB)[†] =
 - (a) range(BB*A*) ⊂ range(A*) and range(A*AB) ⊂ range(B).
 - (b) A[†]ABB* and A*ABB[†] are both Hermitian matrices.
 - (c) $A^{\dagger}ABB^*A^* = BB^*A^*$ and $BB^{\dagger}A^*AB = A^*AB$
 - (d) $A^{\dagger}ABB^*A^*ABB^{\dagger} = BB^*A^*A$.
 - (e) A[†]AB = B(AB)[†]AB and BB[†]A* = A*AB(AB)[†].
- 26. $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$, where \otimes denotes the Kronecker product.
- 27. $A^{\dagger} = \lim_{\alpha \to 0} A^{*}(\alpha I + AA^{*})^{-1} = \lim_{\alpha \to 0} (\alpha I + A^{*}A)^{-1}A^{*}$.

$$28. \ A^{\dagger} = \sum^{\infty} A^* (I + AA^*)^{-j} = \sum^{\infty} (I + A^*A)^{-j} A^*.$$

- 29. (Continuity of pseudo-inverse) Suppose that $A \in F^{m \times n}$ and $E \in F^{m \times n}$, where F = \mathbb{C} or \mathbb{R} . Then $\lim_{t \to \infty} (A + E)^{\dagger} = A^{\dagger}$ if and only if there is $\epsilon > 0$ such that $\operatorname{rank}(A + E) =$ rank(A) when $||E||_2 < \epsilon$.
- 30. Let $A \in \mathbb{C}^{m \times n}$ be of rank r where $0 < r < \min\{m, n\}$. Suppose that A can be partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

where $A_{11} \in \mathbb{C}^{r \times r}$ and $rank(A_{11}) = r$. Then

$$A^{\dagger} = \begin{bmatrix} A_{11}^* X A_{11}^* & A_{11}^* X A_{21}^* \\ A_{12}^* X A_{11}^* & A_{12}^* X A_{21}^* \end{bmatrix}$$
,

where

$$X = (A_{11}A_{11}^* + A_{12}A_{12}^*)^{-1}A_{11}(A_{11}^*A_{11} + A_{21}^*A_{21})^{-1}.$$

Theory

- Consider linear operators as algebraic expressions
- Correctness of first-order operator statements

correctness of algebraic statement

Semi-decision procedure
 → Every true statement
 can be proven

Theory

- Consider linear operators as algebraic expressions
- Correctness of first-order operator statements

correctness of algebraic statement

Semi-decision procedure
 → Every true statement
 can be proven

Software

- SAGEMATH package operator_gb*
- Efficient open-source implementation
- Produces proofs
- Dedicated methods for proving operator statements

*available at https://github.com/ ClemensHofstadler/operator_gb

Theory

- Consider linear operators as algebraic expressions
- Correctness of first-order operator statements

correctness of algebraic statement

Semi-decision procedure
 → Every true statement
 can be proven

Software

- SAGEMATH package operator_gb*
- Efficient open-source implementation
- Produces proofs
- Dedicated methods for proving operator statements

*available at https://github.com/ ClemensHofstadler/operator_gb

Automated proofs of operator statements

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$ABA=A, \qquad BAB=B, \qquad B^*A^*=AB, \qquad A^*B^*=BA$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$ABA=A, \qquad BAB=B, \qquad B^*A^*=AB, \qquad A^*B^*=BA$$

Claim If B and C satisfy these identities, then B = C.

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$ABA = A$$
, $BAB = B$, $B^*A^* = AB$, $A^*B^* = BA$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$ABA = A$$
, $BAB = B$, $B^*A^* = AB$, $A^*B^* = BA$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff L - R = 0$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$ABA=A, \qquad BAB=B, \qquad B^*A^*=AB, \qquad A^*B^*=BA$$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

A different point of view

$$L = R \iff L - R$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$ABA - A$$
, $BAB - B$, $B^*A^* - AB$, $A^*B^* - BA$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff L - R$$

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

Wish Model matrix identities using polynomials

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

Wish Model matrix identities using polynomials

Problem We want to model noncommutative objects

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

Wish Model matrix identities using polynomials

Problem We want to model noncommutative objects

Solution Make our polynomials noncommutative

→ Replace (commutative) monomials by (noncommutative) words.

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

Wish Model matrix identities using polynomials

Problem We want to model noncommutative objects

Solution Make our polynomials noncommutative

→ Replace (commutative) monomials by (noncommutative) words.

Noncom. polynomial
$$f = c_1 \cdot w_1 + \cdots + c_d \cdot w_d \in \mathbb{Z}\langle X \rangle$$

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

Wish Model matrix identities using polynomials

Problem We want to model noncommutative objects

Solution Make our polynomials noncommutative

 \sim Replace (commutative) monomials by (noncommutative) words.

Noncom. polynomial
$$f = c_1 \cdot w_1 + \cdots + c_d \cdot w_d \in \mathbb{Z}\langle X \rangle$$

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

Wish Model matrix identities using polynomials

Problem We want to model noncommutative objects

Solution Make our polynomials noncommutative

Noncom. polynomial
$$f= \fbox{C1.}w_1+\cdots+ \fbox{Cd.}w_d \ \in \ \mathbb{Z}\langle X\rangle$$
 words over $X=\{x_1,\ldots,x_n\}$

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

Wish Model matrix identities using polynomials

Problem We want to model noncommutative objects

Solution Make our polynomials noncommutative

∼ Replace (commutative) monomials by (noncommutative) words.
 Integers

Noncom. polynomial
$$f= \overbrace{c_1.w_1}+\dots+ \overbrace{c_d.w_d} \in \mathbb{Z}\langle X\rangle$$
 words over $X=\{x_1,\dots,x_n\}$

Example:
$$2xy + yx - 2xzx + 4 \in \mathbb{Z}\langle x, y, z \rangle$$

We all know (and love) polynomials, like

$$3xy - 2x^2z + 4 \in \mathbb{Z}[x, y, z].$$

Wish Model matrix identities using polynomials

Problem We want to model noncommutative objects

Solution Make our polynomials noncommutative

→ Replace (commutative) monomials by (noncommutative) words.

Integers

Noncom. polynomial
$$f= \fbox{c_1w_1}+\cdots+ \fbox{c_dw_d} \in \mathbb{Z}\langle X\rangle$$
 words over $X=\{x_1,\ldots,x_n\}$

Example:
$$2xy + yx - 2xzx + 4 \in \mathbb{Z}\langle x, y, z \rangle$$

Multiplication = Concatenation of words

$$(xy-1)\cdot(yx+2) = xyyx + 2xy - yx - 2$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$ABA - A$$
, $BAB - B$, $B^*A^* - AB$, $A^*B^* - BA$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff L - R$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$aba - a$$
, $bab - b$, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$L = R \iff l - r \in \mathbb{Z}\langle \mathbf{X} \rangle$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$aba - a$$
, $bab - b$, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

$$\begin{array}{ccc} L = R & \iff & l - r \in \mathbb{Z}\langle \mathbf{X} \rangle \\ B = \ldots = C & \iff & ? \end{array}$$

For expressing consequences of certain identities/polynomials, we need...

For expressing consequences of certain identities/polynomials, we need...

Definition A set $I \subseteq \mathbb{Z}\langle X \rangle$ is called an ideal if

- 1. $f, g \in I \Rightarrow f + g \in I$
- **2.** $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

For expressing consequences of certain identities/polynomials, we need...

Definition A set $I \subseteq \mathbb{Z}\langle X \rangle$ is called an ideal if

- 1. $f, g \in I \Rightarrow f + g \in I$
- **2.** $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \ldots, f_r is denoted by

$$I = (f_1, \dots, f_r)$$

and $\{f_1, \ldots, f_r\}$ is called a basis for I.

For expressing consequences of certain identities/polynomials, we need...

Definition A set $I \subseteq \mathbb{Z}\langle X \rangle$ is called an ideal if

- 1. $f, g \in I \Rightarrow f + g \in I$
- **2.** $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \ldots, f_r is denoted by

$$I = (f_1, \dots, f_r)$$

and $\{f_1, \dots, f_r\}$ is called a basis for I.

For expressing consequences of certain identities/polynomials, we need...

Definition A set $I \subseteq \mathbb{Z}\langle X \rangle$ is called an ideal if

1.
$$f, g \in I \Rightarrow f + g \in I$$

— "deduction rules"

$$\textbf{2.} \ \ f \in I, \, \mathfrak{p}, \mathfrak{q} \in \mathbb{Z}\langle X \rangle \ \Rightarrow \ \mathfrak{p} \cdot f \cdot \mathfrak{q} \in I$$

The smallest ideal containing f_1, \ldots, f_r is denoted by

$$I = (f_1, \dots, f_r)$$

and $[f_1, \dots, f_r]$ is called a basis for I.

"axioms"

For expressing consequences of certain identities/polynomials, we need...

Definition A set $I \subseteq \mathbb{Z}\langle X \rangle$ is called an ideal if

1.
$$f, g \in I \Rightarrow f + g \in I$$

— "deduction rules"

$$\textbf{2.} \ \ f \in I, \, p,q \in \mathbb{Z}\langle X \rangle \ \Rightarrow \ p \cdot f \cdot q \in I$$

The smallest ideal containing f_1, \ldots, f_r is denoted by

$$[I = (f_1, \dots, f_r)]$$
—"theory"

and $\{f_1, \dots, f_r\}$ is called a basis for I.

"axioms

For expressing consequences of certain identities/polynomials, we need...

Definition A set $I \subseteq \mathbb{Z}\langle X \rangle$ is called an ideal if

1.
$$f, g \in I \Rightarrow f + g \in I$$

2. $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

— "deduction rules"

The smallest ideal containing f_1, \ldots, f_r is denoted by

$$I = (f_1, \dots, f_r)$$
—"theory"

and $\{f_1, \ldots, f_r\}$ is called a basis for I.

"axioms"

$$\text{Fact:} \quad f \in (f_1, \dots, f_r) \quad \Longleftrightarrow \quad \exists \; p_{i,j}, q_{i,j} \; : \; f = \sum_{i,j} p_{i,j} \cdot f_i \cdot q_{i,j}$$

For expressing consequences of certain identities/polynomials, we need...

Definition A set $I \subseteq \mathbb{Z}\langle X \rangle$ is called an ideal if

1.
$$f, g \in I \Rightarrow f + g \in I$$

— "deduction rules"

2.
$$f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$$

The smallest ideal containing f_1, \ldots, f_r is denoted by

$$I = (f_1, \dots, f_r)$$
—"theory"

and $\{f_1, \ldots, f_r\}$ is called a basis for I.

"proof/certificate"

$$\exists p_{i,j}, q_{i,j}$$

$$\left[f = \sum_{i,j} p_{i,j} \cdot f_i \cdot q_{i,j}\right]$$

For expressing consequences of certain identities/polynomials, we need...

Definition A set $I \subseteq \mathbb{Z}\langle X \rangle$ is called an ideal if

1.
$$f, g \in I \Rightarrow f + g \in I$$

2. $f \in I, p, q \in \mathbb{Z}\langle X \rangle \Rightarrow p \cdot f \cdot q \in I$

The smallest ideal containing f_1, \ldots, f_r is denoted by

$$I = (f_1, \dots, f_r)$$
—"theory"

and $\{f_1, \ldots, f_r\}$ is called a basis for I.

Fact: $f \in (f_1, ..., f_r) \iff \exists p_{i,j}, q_{i,j} : f = \sum_{i,j} p_{i,j} \cdot f_i \cdot q_{i,j}$

"proof/certificate"

— "deduction rules"

If such a proof exists, it can be computed using noncom. Gröbner bases.

Example: For $I=(\alpha x-1,by-1)\subseteq \mathbb{Z}\langle \alpha,b,x,y\rangle$ we have

Example: For $I = (ax - 1, by - 1) \subseteq \mathbb{Z}\langle a, b, x, y \rangle$ we have

- $abyx 1 \in I$
- $abxy 1 \notin I$

Example: For $I = (ax - 1, by - 1) \subseteq \mathbb{Z}\langle a, b, x, y \rangle$ we have

- $abyx 1 \in I$, because abyx 1 = a(by 1)x + (ax 1)
- $abxy 1 \notin I$

Example: For $I = (ax - 1, by - 1) \subseteq \mathbb{Z}\langle a, b, x, y \rangle$ we have

- $abyx 1 \in I$, because abyx 1 = a(by 1)x + (ax 1)
- $abxy 1 \not\in I$, because of reasons beyond this talk

Example: For $I = (ax - 1, by - 1) \subseteq \mathbb{Z}\langle a, b, x, y \rangle$ we have

- $abyx 1 \in I$, because abyx 1 = a(by 1)x + (ax 1)
- $abxy 1 \not\in I$, because of reasons beyond this talk

Facts

• Ideal membership problem $f \stackrel{?}{\in} (f_1, \dots, f_r)$ is only semi-decidable

8

Example: For $I = (ax - 1, by - 1) \subseteq \mathbb{Z}\langle a, b, x, y \rangle$ we have

- $abyx 1 \in I$, because abyx 1 = a(by 1)x + (ax 1)
- $abxy 1 \not\in I$, because of reasons beyond this talk

Facts

• Ideal membership problem $f \stackrel{?}{\in} (f_1, \dots, f_r)$ is only semi-decidable • $f \in (f_1, \dots, f_r)$ can always be verified in finite time

8

Example: For $I = (ax - 1, by - 1) \subseteq \mathbb{Z}\langle a, b, x, y \rangle$ we have

- $abyx 1 \in I$, because abyx 1 = a(by 1)x + (ax 1)
- $abxy 1 \notin I$, because of reasons beyond this talk

Facts

- Ideal membership problem $f \stackrel{?}{\in} (f_1, \dots, f_r)$ is only semi-decidable
 - \circ $f \in (f_1, \dots, f_r)$ can always be verified in finite time
 - o in this case, we can also compute a certificate

Example: For $I = (ax - 1, by - 1) \subseteq \mathbb{Z}\langle a, b, x, y \rangle$ we have

- $abyx 1 \in I$, because abyx 1 = a(by 1)x + (ax 1)
- $abxy 1 \notin I$, because of reasons beyond this talk

Facts

- Ideal membership problem $f \stackrel{?}{\in} (f_1, \dots, f_r)$ is only semi-decidable
 - $\circ \ f \in (f_1, \dots, f_r)$ can always be verified in finite time
 - o in this case, we can also compute a certificate
 - \circ if $f \notin (f_1, \dots, f_r)$, we might run into an infinite computation

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$aba - a$$
, $bab - b$, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

A different point of view

$$L = R \iff l - r \in \mathbb{Z}\langle \mathbf{X} \rangle$$

$$B = \ldots = C \quad \Longleftrightarrow \quad ?$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

$$aba - a$$
, $bab - b$, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof
$$B = BAB = BACAB = ... = C$$

A different point of view

$$\begin{array}{ccc} L = R & \iff & l - r \in \mathbb{Z}\langle X \rangle \\ B = \ldots = C & \iff & b - c \in (f_1, \ldots, f_{12}) \end{array}$$

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if $aba - a \,, \qquad bab - b \,, \qquad b^*a^* - ab \,, \qquad a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof Using our software package operator_gb...

```
sage: from operator_gb import *
sage: assumptions = [a*b*a - a,...]
sage: certify(assumptions, b - c)
```

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if aba - a, bab - b, $b^*a^* - ab$, $a^*b^* - ba$

Claim If B and C satisfy these identities, then B = C.

Proof Using our software package operator_gb...

Def.: A matrix B is a Moore-Penrose inverse of a matrix A if

```
aba - a, bab - b, b^*a^* - ab, a^*b^* - ba
```

Claim If B and C satisfy these identities, then B = C.

Proof Using our software package operator_gb...

Observation Proof only relies on basic linearity properties

⇒ Statement proven for matrices, (un)bounded operators, morphisms,...

Operators

- 0, A, B, C, ... S + T, $S \cdot T$, $f(T_1, \ldots, T_n)$

Operators

$$^{*},\ \cdot ^{\mathsf{T}},\ \|\cdot \|,\ \otimes ,\ldots$$

- $0, A, B, C, \dots$ $S + T, S \cdot T, f(T_1, \dots, T_n)$

Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$

Operators

$$^*,\,\cdot^\mathsf{T},\,\|\cdot\|,\,\otimes,\dots$$

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- **4.*** we also allow partial operations (i.e., many-sorted variables)

Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

$$\bullet$$
 0, A, B, C, . . .

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- **4.*** we also allow partial operations (i.e., many-sorted variables)

Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

• 0, A, B, C, ...
•
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

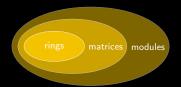
- + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- **4.*** we also allow partial operations (i.e., many-sorted variables)

Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

• 0, A, B, C, ...
•
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

- + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- 4.* we also allow partial operations (i.e., many-sorted variables)

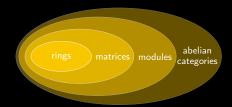


Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

- + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- **4.*** we also allow partial operations (i.e., many-sorted variables)



Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

- 1. + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- **4.*** we also allow partial operations (i.e., many-sorted variables)

Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

Linearity

- 1. + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- **4.*** we also allow partial operations (i.e., many-sorted variables)

Operator statements

$$\textbf{S} = \textbf{T}, \quad \neg\,\phi, \quad (\phi \wedge \psi), \quad (\phi \vee \psi), \quad (\phi \Rightarrow \psi), \quad \exists\, X:\phi, \quad \forall\, X:\phi$$

Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

• 0, A, B, C, ... •
$$S + T$$
, $S \cdot T$, $f(T_1, \ldots, T_n)$

Linearity

- 1. + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- **4.*** we also allow partial operations (i.e., many-sorted variables)

Operator statements

$$S = T$$
, $\neg \varphi$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \Rightarrow \psi)$, $\exists X : \varphi$, $\forall X : \varphi$

Definition An operator statement is universally true if it follows from linearity.

Operators

$$*, \cdot^{\mathsf{T}}, \|\cdot\|, \otimes, \dots$$

•
$$0, A, B, C, \dots$$
 • $S + T, S \cdot T, f(T_1, \dots, T_n)$

Linearity

- 1. + forms an abelian group
- · is associative, i.e., $(S \cdot T) \cdot U = S \cdot (T \cdot U)$
- distributivity, i.e., $S \cdot (T + U) = S \cdot T + S \cdot U$ and $(S + T) \cdot U = S \cdot U + T \cdot U$
- **4.*** we also allow partial operations (i.e., many-sorted variables)

Operator statements

$$\textbf{S} = \textbf{T}, \quad \neg\,\phi, \quad (\phi \wedge \psi), \quad (\phi \vee \psi), \quad (\phi \Rightarrow \psi), \quad \exists\, X:\phi, \quad \forall\, X:\phi$$

Definition An operator statement is universally true if it follows from linearity.

Determining universal truth is not decidable Best we can hope for: semi-decision procedure

Quasi-identities

(Helton, Stankus, Wavrik '98, Schmitz, Levandovskyy '20, Raab, Regensburger, Hossein Poor '21)

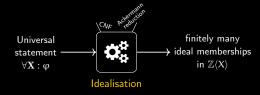
$$\forall \mathbf{X}: \bigwedge_{i=1}^{m} P_i = Q_i \ \Rightarrow \ S = T \qquad \text{iff} \qquad s - t \in \left(p_1 - q_1, \dots, p_m - q_m\right)$$

Universal statements

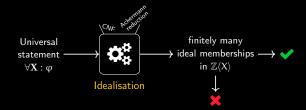
Universal statement

 $\forall X:\phi$

Universal statements

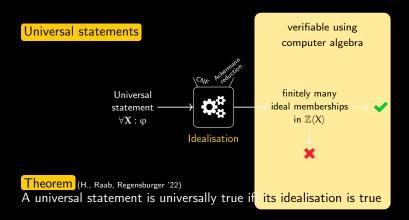


Universal statements



Theorem (H., Raab, Regensburger '22)

A universal statement is universally true iff its idealisation is true



Pseudo-Inverse

Definitions:

A Moore-Penrose pseudo-inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is a matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies the following four Penrose conditions:

$$AA^{\dagger}A = A$$
: $A^{\dagger}AA^{\dagger} = A^{\dagger}$: $(AA^{\dagger})^* = AA^{\dagger}$: $(A^{\dagger}A)^* = A^{\dagger}A$.

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp. 105-141] or [RM71, pp. 44-67].

- ✓. Every $A ∈ \mathbb{C}^{m \times n}$ has a unique pseudo-inverse A^{\dagger} .
- If $A \in \mathbb{R}^{m \times n}$, then A^{\dagger} is real.
- 3. If $A \in \mathbb{C}^{m \times n}$ of rank r has a full rank decomposition A = BC, where $B \in \mathbb{C}^{m \times r}$ and $C \in \mathbb{C}^{r \times n}$, then A^{\dagger} can be evaluated using $A^{\dagger} = C^*(B^*AC^*)^{-1}B^*$.
- √ [LH95, p. 38] If A ∈ C^{m×n} of rank r < min{m, n} has an SVD A = UΣV*, then its
 </p> pseudo-inverse is $A^{\dagger} = V \Sigma^{\dagger} U^*$, where

$$\Sigma^{\dagger} = \text{diag}(1/\sigma_1, \dots, 1/\sigma_r, 0, \dots, 0) \in \mathbb{R}^{n \times m}$$
.

5. [Hig96, p. 412] The pseudo-inverse A^{\dagger} of $A \in F^{m \times n}$ ($F = \mathbb{C}$ or \mathbb{R}) solves the minimization problem

$$\min_{X \in E^{n \times m}} ||AX - I_m||_F^2.$$

 \mathbf{G} . $\mathbf{O}_{mn}^{\dagger} = \mathbf{O}_{nm}$ and $J_{mn}^{\dagger} = \frac{1}{mn} J_{nm}$, where $\mathbf{O}_{mn} \in \mathbb{C}^{m \times n}$ is the all 0s matrix and $J_{mn} \in \mathbb{C}^{m \times n}$ $\mathbb{C}^{m \times n}$ is the all 1s matrix.

 $\alpha^{\dagger} = \{ \begin{matrix} \alpha^{-1}, & \text{if } \alpha \neq 0, \\ 0 & \text{if } \alpha = 0. \end{matrix} \}$

- \checkmark If $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} \neq \mathbf{0}$, then $(\mathbf{x}\mathbf{y}^*)^{\dagger} = \frac{\mathbf{y}\mathbf{x}^*}{\|\mathbf{y}\|^2 \|\mathbf{y}\|^2}$.
- \mathbf{y}' . If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x}^{\dagger} = \frac{\mathbf{x}^*}{\|\mathbf{x}\|^2}$.
- Let α be a scalar. Denote

Then

 $(\alpha A)^{\dagger} = \alpha^{\dagger} A^{\dagger}$.

(b) $(\operatorname{diag}(\beta_1, \beta_2, \dots, \beta_n))^{\dagger} = \operatorname{diag}(\beta_1^{\dagger}, \beta_2^{\dagger}, \dots, \beta_n^{\dagger})$.

- $(A^{\dagger})^* = (A^*)^{\dagger}; (A^{\dagger})^{\dagger} = A.$
- M. If A is a nonsingular square matrix, then A[†] = A⁻¹.
- If U has orthonormal columns or orthonormal rows, then U[†] = U*.
- N. If $A = A^*$ and $A = A^2$, then $A^{\dagger} = A$.

18. $A^{\dagger} = (A^*A)^{\dagger}A^* = A^*(AA^*)^{\dagger}$. In particular,

- M. A[†] = A* if and only if A*A is idempotent. If A is normal and k is a positive integer, then AA[†] = A[†]A and (A^k)[†] = (A[†])^k.
- M. If U ∈ C^{m×n} is of rank n and satisfies U[†] = U*, then U has orthonormal columns. W. If $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices, then $(UAV)^{\dagger} = V^*A^{\dagger}U^*$.
 - (a) if A ∈ C^{m×n} (m > n) has full rank n, then A[†] = (A*A)⁻¹A*;
- (★) if A ∈ C^{m×n} (m ≤ n) has full rank m, then A[†] = A*(AA*)⁻¹.
- 19. Let $A \in \mathbb{C}^{m \times n}$. Then

- (a) A[†]A, AA[†], I_n − A[†]A, and I_m − AA[†] are orthogonal projections.
- (b) $rank(A) = rank(A^{\dagger}) = rank(AA^{\dagger}) = rank(A^{\dagger}A)$.
- (c) $rank(I_n A^{\dagger}A) = n rank(A)$.
- (d) $\operatorname{rank}(I_m AA^{\dagger}) = m \operatorname{rank}(A)$.

Inner Product Spaces, Orthogonal Projection, Least Squares

- 20. $AA^{\dagger} = \text{Proj}_{\text{range}(A)}$; $A^{\dagger}A = \text{Proj}_{\text{range}(A)}$.
- 21. Suppose that $A \in F^{m \times n}$, where $F = \mathbb{C}$ or \mathbb{R} . Then
 - (a) range(A) = range(AA*) = range(AA†).

 - (b) range(A[†]) = range(A*) = range(A*A) = range(A[†]A).
 - (ø) ker(A) = ker(A*A) = ker(A†A).
 - (d) $ker(A^{\dagger}) = ker(A^{\ast}) = ker(AA^{\ast}) = ker(AA^{\dagger}).$
 - (e) range(A[†]A) ⊕ ker(A[†]A) = Fⁿ.
 - (f) range(AA[†]) ⊕ ker(AA[†]) = F^m.
- 22. If $A = A_1 + A_2 + \cdots + A_k$, $A^*A_i = 0$, and $A_iA^* = 0$, for all $i, i = 1, \dots, k, i \neq i$. then $A^{\dagger} = A_1^{\dagger} + A_2^{\dagger} + \cdots + A_n^{\dagger}$.
- 28. If A is an $m \times r$ matrix of rank r and B is an $r \times n$ matrix of rank r, then $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$. $(A^*A)^{\dagger} = A^{\dagger}(A^*)^{\dagger} : (AA^*)^{\dagger} = (A^*)^{\dagger}A^{\dagger}$
- [Gre66] Each one of the following conditions is necessary and sufficient for (AB)[†] =
 - (a) range(BB*A*) ⊂ range(A*) and range(A*AB) ⊂ range(B).
 - A[†]ABB* and A*ABB[†] are both Hermitian matrices.
- $A^{\dagger}ABB^*A^* = BB^*A^* \text{ and } BB^{\dagger}A^*AB = A^*AB$
- (d) $A^{\dagger}ABB^*A^*ABB^{\dagger} = BB^*A^*A$.
- (a) A[†]AB = B(AB)[†]AB and BB[†]A* = A*AB(AB)[†].
- 26. $(A ⊗ B)^{\dagger} = A^{\dagger} ⊗ B^{\dagger}$, where ⊗ denotes the Kronecker product.
- 27. $A^{\dagger} = \lim_{\alpha \to 0} A^{*}(\alpha I + AA^{*})^{-1} = \lim_{\alpha \to 0} (\alpha I + A^{*}A)^{-1}A^{*}$.
- 28. $A^{\dagger} = \sum_{i=1}^{\infty} A^{*}(I + AA^{*})^{-j} = \sum_{i=1}^{\infty} (I + A^{*}A)^{-j}A^{*}$.
- 29. (Continuity of pseudo-inverse) Suppose that $A \in F^{m \times n}$ and $E \in F^{m \times n}$, where F =
- \mathbb{C} or \mathbb{R} . Then $\lim_{t \to \infty} (A + E)^{\dagger} = A^{\dagger}$ if and only if there is $\epsilon > 0$ such that $\operatorname{rank}(A + E) =$ rank(A) when $||E||_2 < \epsilon$.
- 39. Let $A \in \mathbb{C}^{m \times n}$ be of rank r where $0 < r < \min\{m,n\}$. Suppose that A can be partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix},$$

where $A_{11} \in \mathbb{C}^{r \times r}$ and $rank(A_{11}) = r$. Then

$$A^{\dagger} = \begin{bmatrix} A_{11}^* X A_{11}^* & A_{11}^* X A_{21}^* \\ A_{12}^* X A_{11}^* & A_{12}^* X A_{21}^* \end{bmatrix},$$

where

$$X = (A_{11}A_{11}^* + A_{12}A_{12}^*)^{-1}A_{11}(A_{11}^*A_{11} + A_{21}^*A_{21})^{-1}.$$

Fact: A matrix \Rightarrow $\exists P, Q : PA^*A = A \text{ and } AA^*Q = A$

Fact: A matrix
$$\Rightarrow$$
 $\exists P, Q : PA^*A = A$ and $AA^*Q = A$

Claim
$$\exists X : (PA^*A = A \land AA^*Q = A) \Rightarrow mp(A, X)$$

Fact: A matrix
$$\Rightarrow$$
 $\exists P, Q : PA^*A = A$ and $AA^*Q = A$

Claim
$$\exists X : (PA^*A = A \land AA^*Q = A) \Rightarrow mp(A, X)$$

Strategy

- **1.** Derive explicit expression for *X*
- 2. Plug in the explicit expression \sim removes existential quantifier
- 3. Prove remaining statement like before

Fact: A matrix
$$\Rightarrow \exists P, Q : PA^*A = A \text{ and } AA^*Q = A$$

Claim
$$\exists X : (PA^*A = A \land AA^*Q = A) \Rightarrow mp(A, X)$$

Strategy

- 1. Derive explicit expression for X
- 2. Plug in the explicit expression \sim removes existential quantifier
- 3. Prove remaining statement like before

Proof Using our software package operator_gb...

Fact: A matrix
$$\Rightarrow$$
 $\exists P, Q : PA^*A = A$ and $AA^*Q = A$

Claim
$$\exists X : (PA^*A = A \land AA^*Q = A) \Rightarrow mp(A, X)$$

Strategy

- **1.** Derive explicit expression for *X*
- 2. Plug in the explicit expression \sim removes existential quantifier
- 3. Prove remaining statement like before

```
Proof Using our software package operator_gb...
```

```
sage: assumptions = [p*a_adj*a - a,...]
sage: I = NCIdeal(assumptions + pinv(a,x))
```

sage: I.find_equivalent_expression(x)

Fact: A matrix
$$\Rightarrow$$
 $\exists P, Q : PA^*A = A$ and $AA^*Q = A$

Claim
$$\exists X : (PA^*A = A \land AA^*Q = A) \Rightarrow mp(A, X)$$

Strategy

- **1.** Derive explicit expression for *X*
- 2. Plug in the explicit expression \sim removes existential quantifier
- 3. Prove remaining statement like before

"Every matrix has a Moore-Penrose inverse"

Fact: A matrix
$$\Rightarrow$$
 $\exists P, Q : PA^*A = A$ and $AA^*Q = A$

Claim
$$\exists X : (PA^*A = A \land AA^*Q = A) \Rightarrow mp(A, X)$$

Strategy

- **1.** Derive explicit expression for *X*
- 2. Plug in the explicit expression \sim removes existential quantifier
- 3. Prove remaining statement like before

"Every matrix has a Moore-Penrose inverse"

Fact: A matrix
$$\Rightarrow \exists P, Q : PA^*A = A \text{ and } AA^*Q = A$$

Claim
$$\exists X : (PA^*A = A \land AA^*Q = A) \Rightarrow mp(A, X)$$

Strategy

- **1.** Derive explicit expression for *X*
- 2. Plug in the explicit expression \sim removes existential quantifier
- 3. Prove remaining statement like before

Existential statements

In the previous example, we found a suitable polynomial expression.

Question Was this just luck?

Existential statements

In the previous example, we found a suitable polynomial expression.

Question Was this just luck?

Answer No! — Herbrand's theorem (Herbrand '30)

Such expressions always exist and the possible candidates are enumerable.

Existential statements

In the previous example, we found a suitable polynomial expression.

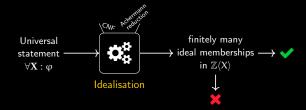
Question Was this just luck?

Answer No! — Herbrand's theorem (Herbrand '30)

Such expressions always exist and the possible candidates are enumerable.

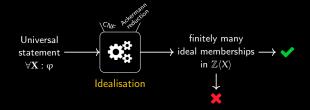
- Enumerating all possible expressions is hopeless
- Requires good heuristics → provided by computer algebra
- Several heuristics implemented in operator_gb
 (ansatz, variable elimination, Gröbner basis techniques,...)

Universal statements



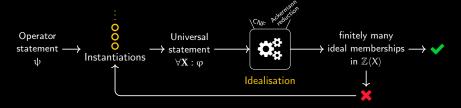
Theorem (H., Raab, Regensburger '22)

General operator statements



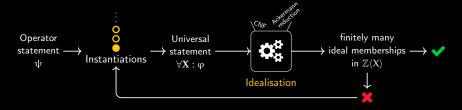
Theorem (H., Raab, Regensburger '22)

General operator statements



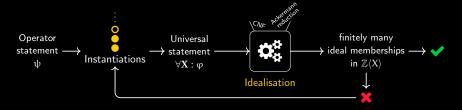
Theorem (H., Raab, Regensburger '22)

General operator statements



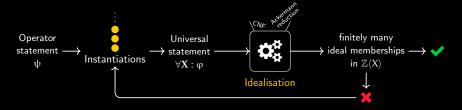
Theorem (H., Raab, Regensburger '22)

General operator statements



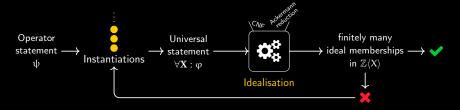
Theorem (H., Raab, Regensburger '22)

General operator statements



Theorem (H., Raab, Regensburger '22)

General operator statements



Theorem (H., Raab, Regensburger '22)

An operator statement is universally true iff the procedure terminates and returns \checkmark

Pseudo-Inverse

Definitions:

A Moore-Penrose pseudo-inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is a matrix $A^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies the following four Penrose conditions:

$$AA^{\dagger}A = A$$
: $A^{\dagger}AA^{\dagger} = A^{\dagger}$: $(AA^{\dagger})^* = AA^{\dagger}$: $(A^{\dagger}A)^* = A^{\dagger}A$.

Facts:

All the following facts except those with a specific reference can be found in [Gra83, pp. 105-141] or [RM71, pp. 44-67].

- ✓ Every A ∈ C^{m×n} has a unique pseudo-inverse A[†].
- If A ∈ R^{m×n}, then A[†] is real.
- \mathcal{J} . If $A \in \mathbb{C}^{m \times n}$ of rank r has a full rank decomposition A = BC, where $B \in \mathbb{C}^{m \times r}$ and $C \in \mathbb{C}^{r \times n}$, then A^{\dagger} can be evaluated using $A^{\dagger} = C^*(B^*AC^*)^{-1}B^*$.
- √ [LH95, p. 38] If A ∈ C^{m×n} of rank r < min{m, n} has an SVD A = UΣV*, then its
 </p> pseudo-inverse is $A^{\dagger} = V \Sigma^{\dagger} U^*$, where

$$\Sigma^{\dagger} = \text{diag}(1/\sigma_1, \dots, 1/\sigma_r, 0, \dots, 0) \in \mathbb{R}^{n \times m}$$
.

 $\fill Hig96$, p. 412 The pseudo-inverse A^{\dagger} of $A \in F^{m \times n}$ ($F = \mathbb{C}$ or \mathbb{R}) solves the minimization problem

$$\min_{X \in F^{n \times m}} ||AX - I_m||_F^2.$$

 \mathbf{G} . $\mathbf{O}_{mn}^{\dagger} = \mathbf{O}_{nm}$ and $J_{mn}^{\dagger} = \frac{1}{mn} J_{nm}$, where $\mathbf{O}_{mn} \in \mathbb{C}^{m \times n}$ is the all 0s matrix and $J_{mn} \in \mathbb{C}^{m \times n}$ $\mathbb{C}^{m \times n}$ is the all 1s matrix.

- \checkmark . If $\mathbf{x} \neq \mathbf{0}$, $\mathbf{y} \neq \mathbf{0}$, then $(\mathbf{x}\mathbf{y}^*)^{\dagger} = \frac{\mathbf{y}\mathbf{x}^*}{\|\mathbf{y}\|^2 \|\mathbf{y}\|^2}$.
- \forall . If $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x}^{\dagger} = \frac{\mathbf{x}^*}{\|\mathbf{x}\|^2}$.
- Let α be a scalar. Denote

a scalar. Denote
$$\alpha^{\dagger} = \{ \begin{matrix} \alpha^{-1}, & \text{if } \alpha \neq 0, \\ 0, & \text{if } \alpha = 0. \end{matrix} \}$$

Then

(a)
$$(\alpha A)^{\dagger} = \alpha^{\dagger} A^{\dagger}$$
.

- $(\operatorname{diag}(\beta_1, \beta_2, \dots, \beta_n))^{\dagger} = \operatorname{diag}(\beta_1^{\dagger}, \beta_2^{\dagger}, \dots, \beta_n^{\dagger}).$
- $(A^{\dagger})^* = (A^*)^{\dagger}; (A^{\dagger})^{\dagger} = A.$
- M. If A is a nonsingular square matrix, then A[†] = A⁻¹.
- If U has orthonormal columns or orthonormal rows, then U[†] = U^{*}.
- N. If $A = A^*$ and $A = A^2$, then $A^{\dagger} = A$.
- M. A[†] = A* if and only if A*A is idempotent. If A is normal and k is a positive integer, then AA[†] = A[†]A and (A^k)[†] = (A[†])^k.
- M. If U ∈ C^{m×n} is of rank n and satisfies U[†] = U*, then U has orthonormal columns. W. If $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices, then $(UAV)^{\dagger} = V^*A^{\dagger}U^*$.
- 18. $A^{\dagger} = (A^*A)^{\dagger}A^* = A^*(AA^*)^{\dagger}$. In particular,
 - (a) if A ∈ C^{m×n} (m > n) has full rank n, then A[†] = (A*A)⁻¹A*;
- (★) if A ∈ C^{m×n} (m ≤ n) has full rank m, then A[†] = A*(AA*)⁻¹.
- 19. Let $A \in \mathbb{C}^{m \times n}$. Then

- (a) A[†]A, AA[†], I_n − A[†]A, and I_m − AA[†] are orthogonal projections.
- $(\mathbf{M} \operatorname{rank}(A) = \operatorname{rank}(A^{\dagger}) = \operatorname{rank}(AA^{\dagger}) = \operatorname{rank}(A^{\dagger}A).$

Inner Product Spaces, Orthogonal Projection, Least Squares

- \bowtie rank $(I_n A^{\dagger}A) = n \text{rank}(A)$.
- $\operatorname{rank}(I_m AA^{\dagger}) = m \operatorname{rank}(A).$
- 26. $AA^{\dagger} = \text{Proj}_{\text{range}(A)}; A^{\dagger}A = \text{Proj}_{\text{range}(A)}.$
- 24. Suppose that $A \in F^{m \times n}$, where $F = \mathbb{C}$ or \mathbb{R} . Then
- (a) $range(A) = range(AA^*) = range(AA^{\dagger})$.
- (b) range (A^{\dagger}) = range (A^*A) = range (A^*A) = range $(A^{\dagger}A)$.
- (ø) ker(A) = ker(A*A) = ker(A†A).
- (d) $ker(A^{\dagger}) = ker(A^{\ast}) = ker(AA^{\ast}) = ker(AA^{\dagger}).$
- range(A[†]A) ⊕ ker(A[†]A) = Fⁿ. $(K)' \operatorname{range}(AA^{\dagger}) \oplus \ker(AA^{\dagger}) = F^m$
- 22. If $A = A_1 + A_2 + \cdots + A_k$, $A^*A_i = 0$, and $A_iA^* = 0$, for all $i, i = 1, \dots, k, i \neq i$.
- then $A^{\dagger} = A_1^{\dagger} + A_2^{\dagger} + \cdots + A_n^{\dagger}$. 26. If A is an $m \times r$ matrix of rank r and B is an $r \times n$ matrix of rank r, then $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- **24.** $(A^*A)^{\dagger} = A^{\dagger}(A^*)^{\dagger}$: $(AA^*)^{\dagger} = (A^*)^{\dagger}A^{\dagger}$.
- [Gre66] Each one of the following conditions is necessary and sufficient for (AB)[†] =
 - (a) range(BB*A*) ⊆ range(A*) and range(A*AB) ⊆ range(B).
 - A[†]ABB* and A*ABB[†] are both Hermitian matrices.
- $A^{\dagger}ABB^*A^* = BB^*A^* \text{ and } BB^{\dagger}A^*AB = A^*AB$
- (d) $A^{\dagger}ABB^*A^*ABB^{\dagger} = BB^*A^*A$.
- (a) A[†]AB = B(AB)[†]AB and BB[†]A* = A*AB(AB)[†].
- 26. $(A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$, where \otimes denotes the Kronecker product.
- $A^{\dagger} = \lim_{\alpha \to 0} A^{*}(\alpha I + AA^{*})^{-1} = \lim_{\alpha \to 0} (\alpha I + A^{*}A)^{-1}A^{*}.$

$$A^{\dagger} = \sum_{i=1}^{\infty} A^{*}(I + AA^{*})^{-j} = \sum_{i=1}^{\infty} (I + A^{*}A)^{-j}A^{*}.$$

- M. (Continuity of pseudo-inverse) Suppose that $A \in F^{m \times n}$ and $E \in F^{m \times n}$, where F = \mathbb{C} or \mathbb{R} . Then $\lim_{t \to \infty} (A + E)^{\dagger} = A^{\dagger}$ if and only if there is $\epsilon > 0$ such that $\operatorname{rank}(A + E) = 0$ rank(A) when $||E||_2 < \epsilon$.
- 39. Let $A \in \mathbb{C}^{m \times n}$ be of rank r where $0 < r < \min\{m,n\}$. Suppose that A can be partitioned as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
,

where $A_{11} \in \mathbb{C}^{r \times r}$ and $rank(A_{11}) = r$. Then

$$A^{\dagger} = \begin{bmatrix} A_{11}^* X A_{11}^* & A_{11}^* X A_{21}^* \\ A_{12}^* X A_{11}^* & A_{12}^* X A_{21}^* \end{bmatrix}$$
,

where

$$X = (A_{11}A_{11}^* + A_{12}A_{12}^*)^{-1}A_{11}(A_{11}^*A_{11} + A_{21}^*A_{21})^{-1}.$$

- - each proof takes < 1 second
 - o proofs consist of up to 226 polynomials

- - each proof takes < 1 second
 - o proofs consist of up to 226 polynomials
- Recent results in operator theory

Reverse order law for the Moore-Penrose inverse *

Dragan S. Diordiević*, Nebojša Č. Dinčić

Faculty of Sciences and Mathematics, University of NIX, PO Box 224, 18000 NIX, Browblic of Serbia

ARTICLE INFO

ARSTRACT

Received 7 May 2009 Available neline 2 Sentember 2009 Moore-Penrose inverse

In this paper we present new results related to the reverse order law for the Moore-Penrose inverse of operators on Hilbert spaces. Some finite-dimensional results are extended to infinite-dimensional settings. © 2009 Elsevier Inc. All rights reserved.

Reverse order law

1. Introduction

In this paper we extend some results from [15] to infinite-dimensional settings. Among other things, we obtain the reverse order law for the Moore-Penrose inverse as a corollary. We use the matrix form of a linear bounded operator, and this matrix form is induced by some natural decompositions of Hilbert spaces.

In the rest of the Introduction we formulate two auxiliary results, in Section 2 we present the results related to the reverse order rule for the Moore-Penrose inverse of Hilbert space operators with closed range. The present paper is the extension of results from [15] to infinite-dimensional settings.

2. Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

Theorem 2.2. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then the following statements hold:

 $(AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A^*AB = BB^{\dagger}A^*AB \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1,2,3);$ $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow ABB^* = ABB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1, 2, 4\};$ The following statements are equivalent:

(M (AR)) - RIAT- $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger}$ and $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB$: $A^*AB = BB^{\dagger}A^*AB$ and $ABB^* = ABB^*A^{\dagger}A$: $(A^*AB) \subseteq \mathcal{R}(B)$ and $\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*)$.

Proof. The operators A and B have the same matrix representations as in the previous theorem. The following products will be useful-

$$AB = \begin{bmatrix} A_1B_1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad (AB)^\dagger = \begin{bmatrix} (A_1B_1)^\dagger & 0 \\ 0 & 0 \end{bmatrix}, \qquad B^\dagger A^\dagger = \begin{bmatrix} B_1^{-1}A_1^*D^{-1} & 0 \\ 0 & 0 \end{bmatrix}.$$

First, we find the equivalent expressions for our statements in terms of A_1 , A_2 and B_1 .

D.S. Disediević, N.C. Dinčić / J. Moth. Anal. Appl. 361 (2010) 252-261

- (a) I. $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1}$. Here $A_1B_1(A_1B_1)^{\dagger}$ is Hermitian, so $[A_1A_1^*, D^{-1}] = 0$. 2. $A^*AB = BB^{\dagger}A^*AB \Leftrightarrow A^*_1A_1 = 0$.

 - Notice that R(A*AB) ⊂ R(B) if and only if BB†A*AB = A*AB, so 2 ⇔ 3.
 - If we check properly the Penrose equations, then we see that: B[†]A[†] ∈ (AB)(1, 2, 3) ⇔ A₁A^{*}₁D⁻¹A₁ = A₁ and
 - $[A_1A_1^*, D^{-1}] = 0.$

Now, we prove the following: $1 \Leftrightarrow 2$, $4 \Rightarrow 2$ and $1 \Rightarrow 4$.

We prove 1 & 2. Notice that

 $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1} \Leftrightarrow (A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1}$

The last statement is obtained by multiplying the first expression by $(A_1B_2)^{\dagger}$ from the left side, or multiplying the second expression by A_1B_1 from the left side, and using $A_1A_1^* = A_1B_1B_1^{-1}A_1^*$. Now, there is a chain of the equivalences: $(A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1} \Leftrightarrow (A_1B_1)^{\dagger}(A_1A_1^* + A_2A_1^*) = (A_1B_1)^{\dagger}A_1A_1^*$

$$\Leftrightarrow (A_1B_1)^{\dagger}A_2A_2^* = 0 \Leftrightarrow \mathcal{R}(A_2A_2^*) \subset \mathcal{N}((A_1B_1)^{\dagger})$$

$$\Leftrightarrow \mathcal{R}(A_2) \subset \mathcal{N}((A_1B_1)^*) \Leftrightarrow B_1^*A_1^*A_2 = 0 \Leftrightarrow A_1^*A_2 = 0.$$

Therefore, we have just proved that $1 \Leftrightarrow 2$. Now we prove $1 \rightarrow 4$. If we multiply $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^{*}D^{-1}$ by A_1B_1 from the right side, we get $A_1A_1^{*}D^{-1}A_1 = A_1$. Thus, 4 holds.

Finally, we prove $4 \Rightarrow 2$. If $A_1A_1^*D^{-1}A_1 = A_1$ and $[A_1A_1^*, D^{-1}] = 0$, then $A_1A_1^*A_2 = DA_1 = A_1A_1^*A_1 + A_2A_2^*A_1$, implying that $A_2A_1^*A_1=0$. Hence, $\mathcal{R}(A_1)\subset\mathcal{N}(A_2A_1^*)=\mathcal{N}(A_1^*)$, so $A_1^*A_1=0$. Thus, 2 holds. Notice that the equivalence 3 \Leftrightarrow 4 is proved in [8], also.

- (b) 1. $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow (A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A^{\dagger}D^{-1}A_1B_1$, Moreover, $(A_1B_1)^{\dagger}A_1B_1$ is Hermitian, so $[B_1B^{\dagger}, A^{\dagger}D^{-1}A_1] =$ 2. $ABB^* = ABB^*A^{\dagger}A \Leftrightarrow A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^* \text{ and } A_1B_1B_1^*A_1^*D^{-1}A_2 = 0.$
- 3. Notice that $\mathcal{R}(BB^*A^*) \subset \mathcal{R}(A^*)$ if and only if $A^{\dagger}ABB^*A^* = BB^*A^*$, which is equivalent to $ABB^*A^{\dagger}A = ABB^*$. Hence,
- 4. The Penrose equations imply that: $B^{\dagger}A^{\dagger} \in (AB)(1,2,4) \Leftrightarrow A_1A^{\dagger}D^{-1}A_1 = A_1$ and $[B_1B^{\dagger}, A^{\dagger}D^{-1}A_1] = 0$. We prove $1 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$.

Suppose that 1 holds. If we multiply $(A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$ by A_1B_1 from the left side, we obtain $A_1 =$ $A_1A_1^*D^{-1}A_1$, Furthermore, $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$ holds. Therefore, $1 \Rightarrow 4$. Suppose that 4 holds. Obviously, $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1A_1^*D^{-1}A_1B_1B_1^* = A_1B_1B_1^*$. Thus, the first equality of 2 holds. The

second equality of 2 also holds, since $A_1^*D^{-1}A_2 = 0 \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1$, which is shown in the proof of Theorem 2.1. Here we use again $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$. Consequently, $4 \Rightarrow 2$. In order to prove that $2 \rightarrow 1$, we multiply $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ by $(A_1B_1)^{\dagger}$ from the left side. It follows lows that $B_1^*A_1^*D^{-1}A_1 = (A_1B_1)^{\dagger}A_1B_1B_1^*$, so $(A_1B_1)^{\dagger}A_1B_1 = B_1^*A_1^*D^{-1}A_1(B_1^*)^{-1}$ which is equivalent to $(A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_1B_2 = (A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_$

 $B_1^{-1}A_1^*D_1^{-1}A_1B_1$. Hence, $2 \Rightarrow 1$. Notice that 3 oo 4 is also proved in [8].

Finally, the part (c) follows from the parts (a) and (b).

We also prove the following result

Theorem 2.3. Let X. Y. Z be Hilbert spaces, and let A e. C.(Y. Z). B e. C.(X. Y) be such that A. B. AB have closed ranges. Then we

 $(AB(AB)^{\dagger}A = ABB^{\dagger} \Leftrightarrow A^*ABB^{\dagger} = BB^{\dagger}A^*A \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1, 2, 3)$ $(b^{\dagger}B(AB)^{\dagger}AB = A^{\dagger}AB \Leftrightarrow A^{\dagger}ABB^* = BB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)[1, 2, 4];$ The following three statements are equivalent:

 $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ $AB(AB)^{\dagger}A = ABB^{\dagger}$ and $B(AB)^{\dagger}AB = A^{\dagger}AB$: A*ARRT - RRTA*A and ATARR* - RR*ATA

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent expressions, in the terms of A_1 , A_2 and B_1 , for our assumptions.

Dragan S. Diordiević*, Nebojša Č. Dinčić

Faculty of Sciences and Mathematics, University of NIX, PO Box 224, 18000 NIX, Browblic of Serbia

ARTICLE INFO

ARSTRACT

Received 7 May 2009 Available neline 2 Sentember 2009 Moore-Penrose inverse

In this paper we present new results related to the reverse order law for the Moore-

Penrose inverse of operators on Hilbert spaces. Some finite-dimensional results are extended to infinite-dimensional settings. © 2009 Elsevier Inc. All rights reserved.

Reverse order law

1. Introduction

In this paper we extend some results from [15] to infinite-dimensional settings. Among other things, we obtain the reverse order law for the Moore-Penrose inverse as a corollary. We use the matrix form of a linear bounded operator, and this matrix form is induced by some natural decompositions of Hilbert spaces.

In the rest of the introduction we formulate two auxiliary results. In Section 2 we present the results related to th reverse order rule for the Moore-Penrose inverse of Hilbert space operators with closed range. The present paper is the extension of results from [15] to infinite-dimensional settings.

2. Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

Theorem 2.2. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then the following statements hold:

 $(AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A^*AB = BB^{\dagger}A^*AB \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1,2,3);$ $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow ABB^* = ABB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1, 2, 4\};$

The following statements are equivalent: (M (AR)) - RIAT-

 $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger}$ and $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB$; $A^*AB = BB^{\dagger}A^*AB$ and $ABB^* = ABB^*A^{\dagger}A$: $(A^*AB) \subseteq \mathcal{R}(B)$ and $\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*)$.

Proof. The operators A and B have the same matrix representations as in the previous theorem. The following products will be useful-

$$AB = \begin{bmatrix} A_1B_1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad (AB)^\dagger = \begin{bmatrix} (A_1B_1)^\dagger & 0 \\ 0 & 0 \end{bmatrix}, \qquad B^\dagger A^\dagger = \begin{bmatrix} B_1^{-1}A_1^*D^{-1} & 0 \\ 0 & 0 \end{bmatrix}.$$

First, we find the equivalent expressions for our statements in terms of A_1 , A_2 and B_1 .

D.S. Disediević, N.C. Dinčić / J. Moth. Anal. Appl. 361 (2010) 252-261

- (a) I. $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1}$. Here $A_1B_1(A_1B_1)^{\dagger}$ is Hermitian, so $[A_1A_1^*, D^{-1}] = 0$. 2. $A^*AB = BB^{\dagger}A^*AB \Leftrightarrow A^*_1A_1 = 0$.
 - Notice that R(A*AB) ⊂ R(B) if and only if BB†A*AB = A*AB, so 2 ⇔ 3.
 - If we check properly the Penrose equations, then we see that: B[†]A[†] ∈ (AB)(1, 2, 3) ⇔ A₁A^{*}₁D⁻¹A₁ = A₁ and

 $[A_1A_1^*, D^{-1}] = 0.$

Now, we prove the following: $1 \Leftrightarrow 2$, $4 \Rightarrow 2$ and $1 \Rightarrow 4$. We prove 1 & 2. Notice that

 $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1} \Leftrightarrow (A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1}$

The last statement is obtained by multiplying the first expression by $(A_1B_2)^{\dagger}$ from the left side, or multiplying the second expression by A_1B_1 from the left side, and using $A_1A_1^* = A_1B_1B_1^{-1}A_1^*$. Now, there is a chain of the equivalences: $(A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1} \Leftrightarrow (A_1B_1)^{\dagger}(A_1A_1^* + A_2A_1^*) = (A_1B_1)^{\dagger}A_1A_1^*$

$$\Leftrightarrow (A_1B_1)^{\dagger}A_2A_2^* = 0 \Leftrightarrow \mathcal{R}(A_2A_2^*) \subset \mathcal{N}((A_1B_1)^{\dagger})$$

$$\Leftrightarrow \mathcal{R}(A_2) \subset \mathcal{N}((A_1B_1)^*) \Leftrightarrow B_1^*A_1^*A_2 = 0 \Leftrightarrow A_1^*A_2 = 0.$$

Therefore, we have just proved that $1 \Leftrightarrow 2$. Now we prove $1 \rightarrow 4$. If we multiply $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^{*}D^{-1}$ by A_1B_1 from the right side, we get $A_1A_1^{*}D^{-1}A_1 = A_1$. Thus, 4 holds.

Finally, we prove $4 \Rightarrow 2$. If $A_1A_1^*D^{-1}A_1 = A_1$ and $(A_1A_1^*D^{-1}) = 0$, then $A_1A_1^*A_2 = DA_1 = A_1A_1^*A_1 + A_2A_1^*A_2$, implying that $A_2A_1^*A_1=0$. Hence, $\mathcal{R}(A_1)\subset\mathcal{N}(A_2A_1^*)=\mathcal{N}(A_1^*)$, so $A_1^*A_1=0$. Thus, 2 holds. Notice that the equivalence 3 \Leftrightarrow 4 is proved in [8], also.

- (b) 1. $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow (A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A^{\dagger}D^{-1}A_1B_1$, Moreover, $(A_1B_1)^{\dagger}A_1B_1$ is Hermitian, so $[B_1B^{\dagger}, A^{\dagger}D^{-1}A_1] =$ 2. $ABB^* = ABB^*A^{\dagger}A \Leftrightarrow A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^* \text{ and } A_1B_1B_1^*A_1^*D^{-1}A_2 = 0.$
- 3. Notice that $\mathcal{R}(BB^*A^*) \subset \mathcal{R}(A^*)$ if and only if $A^{\dagger}ABB^*A^* = BB^*A^*$, which is equivalent to $ABB^*A^{\dagger}A = ABB^*$. Hence,

4. The Penrose equations imply that: $B^{\dagger}A^{\dagger} \in (AB)(1,2,4) \Leftrightarrow A_1A^{\dagger}D^{-1}A_1 = A_1$ and $[B_1B^{\dagger}, A^{\dagger}D^{-1}A_1] = 0$. We prove $1 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$.

Suppose that 1 holds. If we multiply $(A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$ by A_1B_1 from the left side, we obtain $A_1 =$ $A_1A_1^*D^{-1}A_1$, Furthermore, $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$ holds. Therefore, $1 \Rightarrow 4$. Suppose that 4 holds. Obviously, $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1A_1^*D^{-1}A_1B_1B_1^* = A_1B_1B_1^*$. Thus, the first equality of 2 holds. The

second equality of 2 also holds, since $A_1^*D^{-1}A_2 = 0 \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1$, which is shown in the proof of Theorem 2.1. Here we use again $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$. Consequently, $4 \Rightarrow 2$. In order to prove that $2 \rightarrow 1$, we multiply $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ by $(A_1B_1)^{\dagger}$ from the left side. It follows

lows that $B_1^*A_1^*D^{-1}A_1 = (A_1B_1)^{\dagger}A_1B_1B_1^*$, so $(A_1B_1)^{\dagger}A_1B_1 = B_1^*A_1^*D^{-1}A_1(B_1^*)^{-1}$ which is equivalent to $(A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_1B_2 = (A_1B_1)^{\dagger}A_1B_1 = (A_1B_1)^{\dagger}A_$ $B_1^{-1}A_1^*D_1^{-1}A_1B_1$. Hence, $2 \Rightarrow 1$. Notice that 3 oo 4 is also proved in [8].

Finally, the part (c) follows from the parts (a) and (b).

We also prove the following result

Theorem 2.3. Let X. Y. Z be Hilbert spaces, and let A e. C.(Y. Z). B e. C.(X. Y) be such that A. B. AB have closed ranges. Then we

 $(AB(AB)^{\dagger}A = ABB^{\dagger} \Leftrightarrow A^*ABB^{\dagger} = BB^{\dagger}A^*A \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)(1, 2, 3)$ $(b^{\dagger}B(AB)^{\dagger}AB = A^{\dagger}AB \Leftrightarrow A^{\dagger}ABB^* = BB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)[1, 2, 4];$ The following three statements are equivalent:

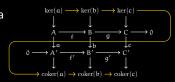
 $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ $AB(AB)^{\dagger}A = ABB^{\dagger}$ and $B(AB)^{\dagger}AB = A^{\dagger}AB$: A*ARRT - RRTA*A and ATARR* - RR*ATA

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent expressions, in the terms of A_1 , A_2 and B_1 , for our assumptions.

- - each proof takes < 1 second
 - o proofs consist of up to 226 polynomials
- Recent results in operator theory
 - they: We use [...] decompositions of Hilbert spaces
 - \circ we: purely algebraic proofs \Rightarrow our proofs generalise results

- Handbook of Lin. Algebra (20 √/ 6 √/ 4 X) (Bernauer, H., Regensburger '23)
 - each proof takes < 1 second
 - o proofs consist of up to 226 polynomials
- Recent results in operator theory
 - they: We use [...] decompositions of Hilbert spaces
 - o we: purely algebraic proofs ⇒ our proofs generalise results
- New results (Cvetković-Ilić, H., Hossein Poor, Milošević, Raab, Regensburger '21)
 - software used to find minimal assumptions

- Handbook of Lin. Algebra (20 √/ 6 √/ 4 X) (Bernauer, H., Regensburger '23)
 - each proof takes < 1 second
 - o proofs consist of up to 226 polynomials
- Recent results in operator theory
 - they: We use [...] decompositions of Hilbert spaces
 - \circ we: purely algebraic proofs \Rightarrow our proofs generalise results
- New results (Cvetković-Ilić, H., Hossein Poor, Milošević, Raab, Regensburger '21)
 - software used to find minimal assumptions
- Homological algebra



Theorem (Djordjević, Dinčić '09) A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} \; = \; (A^{\dagger}AB)^{\dagger}A^{\dagger} \; = \; B^{\dagger}A^{\dagger} \quad \Rightarrow \quad (AB)^{\dagger} \; = \; B^{\dagger}A^{\dagger}$$

Theorem (Djordjević, Dinčić '09) A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} \; = \; (A^{\dagger}AB)^{\dagger}A^{\dagger} \; = \; B^{\dagger}A^{\dagger} \quad \Rightarrow \quad (AB)^{\dagger} \; = \; B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into $(ab)^\dagger - b^\dagger a^\dagger \in (f_1, \dots, f_{44})$

Theorem (Djordjević, Dinčić '09) A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into $(\alpha b)^\dagger - b^\dagger \alpha^\dagger \in (f_1, \dots, f_{44})$

Proof

Theorem (Djordjević, Dinčić '09) A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into $(ab)^{\dagger} - b^{\dagger}a^{\dagger} \in (f_1, \dots, f_{44})^{\dagger}$

Proof

```
\begin{split} \dots &- (ab)^\dagger abb^\dagger \mathbf{f_7} (ab)^\dagger b (a^\dagger ab)^\dagger b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger \\ &- (ab)^\dagger abb^\dagger \mathbf{f_5} b (a^\dagger ab)^\dagger b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger \\ &- (ab)^\dagger a \mathbf{f_{22}} a^\dagger ab (a^\dagger ab)^\dagger (abb^\dagger)^\dagger + \dots \end{split}
```

Theorem (Djordjević, Dinčić '09) A, B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into $(ab)^\dagger - b^\dagger a^\dagger \in (f_1, \dots, f_{44})$

Proof

```
 \begin{aligned} &\dots - (ab)^\dagger abb^\dagger f_7(ab)^\dagger b (a^\dagger ab)^\dagger b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger \\ &- (ab)^\dagger abb^\dagger f_5 b (a^\dagger ab)^\dagger b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger \\ &- (ab)^\dagger a f_{22} a^\dagger ab (a^\dagger ab)^\dagger (abb^\dagger)^\dagger + \dots \end{aligned}   Sig-GB \\ + \\ LP
```

Theorem (Djordjević, Dinčić '09) A,B matrices such that AB exists.

$$B^{\dagger}(ABB^{\dagger})^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Rightarrow (AB)^{\dagger} = B^{\dagger}A^{\dagger}$$

Correctness of this theorem translates into $(ab)^\dagger - b^\dagger a^\dagger \in (f_1, \dots, f_{44})$

Proof

$$\begin{split} ... - (ab)^\dagger abb^\dagger \frac{f_7}{f_7} (ab)^\dagger b (a^\dagger ab)^\dagger b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger \\ - (ab)^\dagger abb^\dagger \frac{f_5}{f_5} b (a^\dagger ab)^\dagger b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger \\ - (ab)^\dagger a \frac{f_{22}}{2} a^\dagger a b (a^\dagger ab)^\dagger (abb^\dagger)^\dagger + \ldots \end{split}$$

Another proof

$$\begin{split} (ab)^\dagger - b^\dagger a^\dagger &= f_{21} - f_{10} + b^\dagger f_{14} - f_{12} (ab)^\dagger - b^\dagger (abb^\dagger)^\dagger f_{11} + b^\dagger (abb^\dagger)^\dagger f_{15} \\ &+ (a^\dagger ab)^\dagger a^\dagger f_9 (ab)^\dagger - b^* f_{23} ((ab)^\dagger)^* (ab)^\dagger - f_{21} ab (ab)^\dagger + f_{22} ab (ab)^\dagger \\ &- f_{39} (a^\dagger)^* ((ab)^\dagger)^* (ab)^\dagger + b^\dagger (abb^\dagger)^\dagger ((abb^\dagger)^\dagger)^* (b^\dagger)^* f_{31} - b^\dagger f_{14} \, d^* b^* (a^\dagger)^* \\ &+ (a^\dagger ab)^\dagger a^\dagger ab f_{12} (ab)^\dagger - b^\dagger (abb^\dagger)^\dagger f_{15} ((ab)^\dagger)^* b^* (a^\dagger)^* \\ &+ f_{20} b^* (a^\dagger)^* ((ab)^\dagger)^* (ab)^\dagger + (a^\dagger ab)^\dagger a^\dagger abb^* f_{23} ((ab)^\dagger)^* (ab)^\dagger \end{split}$$

sig-GB

ΙP

$$\forall A, B, C : (A \neq 0 \land AB = AC) \Rightarrow B = C$$

$$\forall A, B, C : (A \neq 0 \land AB = AC) \Rightarrow B = C$$

Idea: make ansatz
with matrices
of fixed size

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \qquad C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\forall A,B,C \ : \ (A \neq 0 \ \land \ AB = AC) \ \Rightarrow \ B = C$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \begin{array}{c} \text{SAT} \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

$$\forall A,B,C \ : \ (A \neq 0 \ \land \ AB = AC) \ \Rightarrow \ B = C$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \qquad \begin{array}{c} \text{SAT} \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

Does this always work?

$$\forall A,B,C : (A \neq 0 \land AB = AC) \Rightarrow B = C$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \begin{array}{c} \text{SAT} \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

Does this always work? – No.

$$\forall A,B,C \ : \ (A \neq 0 \ \land \ AB = AC) \ \Rightarrow \ B = C$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \qquad \begin{array}{c} \text{SAT} \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

Does this always work? - No.

Will a better algorithm always work?

$$\forall A,B,C \ : \ (A \neq 0 \ \land \ AB = AC) \ \Rightarrow \ B = C$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \qquad \begin{array}{c} \text{SAT} \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

Does this always work? - No.

Will a better algorithm always work? - No.

$$\forall A,B,C \ : \ (A \neq 0 \ \land \ AB = AC) \ \Rightarrow \ B = C$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \begin{array}{c} \text{SAT} \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

Does this always work? - No.

Will a better algorithm always work? - No.

Does this work often enough?

$$\forall A,B,C \ : \ (A \neq 0 \ \land \ AB = AC) \ \Rightarrow \ B = C$$

$$\begin{array}{c} \text{Idea: make ansatz} \\ \text{with matrices} \\ \text{of fixed size} \end{array} \qquad \begin{array}{c} \text{SAT} \\ \text{Hensel lifting} \end{array}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}$$

Does this always work? - No.

Will a better algorithm always work? - No.

Does this work often enough? - Don't know yet.

Conclusion

Summary

- Framework for proving first-order statements about linear operators
- Approach yields semi-decision procedure
- We can find minimal assumptions, short proofs, counterexamples,...

Outlook

- Use state-of-the-art techniques from theorem proving
- Include operator series, analytic properties, uncertainty,...
- Further applications

